ترغب بنشر مسار تعليمي؟ اضغط هنا

Spike and slab empirical Bayes sparse credible sets

88   0   0.0 ( 0 )
 نشر من قبل Ismael Castillo
 تاريخ النشر 2018
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

In the sparse normal means model, coverage of adaptive Bayesian posterior credible sets associated to spike and slab prior distributions is considered. The key sparsity hyperparameter is calibrated via marginal maximum likelihood empirical Bayes. First, adaptive posterior contraction rates are derived with respect to $d_q$--type--distances for $qleq 2$. Next, under a type of so-called excessive-bias conditions, credible sets are constructed that have coverage of the true parameter at prescribed $1-alpha$ confidence level and at the same time are of optimal diameter. We also prove that the previous conditions cannot be significantly weakened from the minimax perspective.

قيم البحث

اقرأ أيضاً

An empirical Bayes approach to the estimation of possibly sparse sequences observed in Gaussian white noise is set out and investigated. The prior considered is a mixture of an atom of probability at zero and a heavy-tailed density gamma, with the mi xing weight chosen by marginal maximum likelihood, in the hope of adapting between sparse and dense sequences. If estimation is then carried out using the posterior median, this is a random thresholding procedure. Other thresholding rules employing the same threshold can also be used. Probability bounds on the threshold chosen by the marginal maximum likelihood approach lead to overall risk bounds over classes of signal sequences of length n, allowing for sparsity of various kinds and degrees. The signal classes considered are ``nearly black sequences where only a proportion eta is allowed to be nonzero, and sequences with normalized ell_p norm bounded by eta, for eta >0 and 0<ple 2. Estimation error is measured by mean qth power loss, for 0<qle 2. For all the classes considered, and for all q in (0,2], the method achieves the optimal estimation rate as nto infty and eta to 0 at various rates, and in this sense adapts automatically to the sparseness or otherwise of the underlying signal. In addition the risk is uniformly bounded over all signals. If the posterior mean is used as the estimator, the results still hold for q>1. Simulations show excellent performance.
Variable selection in the linear regression model takes many apparent faces from both frequentist and Bayesian standpoints. In this paper we introduce a variable selection method referred to as a rescaled spike and slab model. We study the importance of prior hierarchical specifications and draw connections to frequentist generalized ridge regression estimation. Specifically, we study the usefulness of continuous bimodal priors to model hypervariance parameters, and the effect scaling has on the posterior mean through its relationship to penalization. Several model selection strategies, some frequentist and some Bayesian in nature, are developed and studied theoretically. We demonstrate the importance of selective shrinkage for effective variable selection in terms of risk misclassification, and show this is achieved using the posterior from a rescaled spike and slab model. We also show how to verify a procedures ability to reduce model uncertainty in finite samples using a specialized forward selection strategy. Using this tool, we illustrate the effectiveness of rescaled spike and slab models in reducing model uncertainty.
This paper explores a class of empirical Bayes methods for level-dependent threshold selection in wavelet shrinkage. The prior considered for each wavelet coefficient is a mixture of an atom of probability at zero and a heavy-tailed density. The mixi ng weight, or sparsity parameter, for each level of the transform is chosen by marginal maximum likelihood. If estimation is carried out using the posterior median, this is a random thresholding procedure; the estimation can also be carried out using other thresholding rules with the same threshold. Details of the calculations needed for implementing the procedure are included. In practice, the estimates are quick to compute and there is software available. Simulations on the standard model functions show excellent performance, and applications to data drawn from various fields of application are used to explore the practical performance of the approach. By using a general result on the risk of the corresponding marginal maximum likelihood approach for a single sequence, overall bounds on the risk of the method are found subject to membership of the unknown function in one of a wide range of Besov classes, covering also the case of f of bounded variation. The rates obtained are optimal for any value of the parameter p in (0,infty], simultaneously for a wide range of loss functions, each dominating the L_q norm of the sigmath derivative, with sigmage0 and 0<qle2.
We investigate the frequentist coverage properties of Bayesian credible sets in a general, adaptive, nonparametric framework. It is well known that the construction of adaptive and honest confidence sets is not possible in general. To overcome this p roblem we introduce an extra assumption on the functional parameters, the so called general polished tail condition. We then show that under standard assumptions both the hierarchical and empirical Bayes methods results in honest confidence sets for sieve type of priors in general settings and we characterize their size. We apply the derived abstract results to various examples, including the nonparametric regression model, density estimation using exponential families of priors, density estimation using histogram priors and nonparametric classification model, for which we show that their size is near minimax adaptive with respect to the considered specific semi-metrics.
We consider the asymptotic behaviour of the marginal maximum likelihood empirical Bayes posterior distribution in general setting. First we characterize the set where the maximum marginal likelihood estimator is located with high probability. Then we provide oracle type of upper and lower bounds for the contraction rates of the empirical Bayes posterior. We also show that the hierarchical Bayes posterior achieves the same contraction rate as the maximum marginal likelihood empirical Bayes posterior. We demonstrate the applicability of our general results for various models and prior distributions by deriving upper and lower bounds for the contraction rates of the corresponding empirical and hierarchical Bayes posterior distributions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا