ﻻ يوجد ملخص باللغة العربية
In the sparse normal means model, coverage of adaptive Bayesian posterior credible sets associated to spike and slab prior distributions is considered. The key sparsity hyperparameter is calibrated via marginal maximum likelihood empirical Bayes. First, adaptive posterior contraction rates are derived with respect to $d_q$--type--distances for $qleq 2$. Next, under a type of so-called excessive-bias conditions, credible sets are constructed that have coverage of the true parameter at prescribed $1-alpha$ confidence level and at the same time are of optimal diameter. We also prove that the previous conditions cannot be significantly weakened from the minimax perspective.
An empirical Bayes approach to the estimation of possibly sparse sequences observed in Gaussian white noise is set out and investigated. The prior considered is a mixture of an atom of probability at zero and a heavy-tailed density gamma, with the mi
Variable selection in the linear regression model takes many apparent faces from both frequentist and Bayesian standpoints. In this paper we introduce a variable selection method referred to as a rescaled spike and slab model. We study the importance
This paper explores a class of empirical Bayes methods for level-dependent threshold selection in wavelet shrinkage. The prior considered for each wavelet coefficient is a mixture of an atom of probability at zero and a heavy-tailed density. The mixi
We investigate the frequentist coverage properties of Bayesian credible sets in a general, adaptive, nonparametric framework. It is well known that the construction of adaptive and honest confidence sets is not possible in general. To overcome this p
We consider the asymptotic behaviour of the marginal maximum likelihood empirical Bayes posterior distribution in general setting. First we characterize the set where the maximum marginal likelihood estimator is located with high probability. Then we