ترغب بنشر مسار تعليمي؟ اضغط هنا

The Accuracy of the Demographic Inferences Shown on Googles Ad Settings

63   0   0.0 ( 0 )
 نشر من قبل Michael Tschantz
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Googles Ad Settings shows the gender and age that Google has inferred about a web user. We compare the inferred values to the self-reported values of 501 survey participants. We find that Google often does not show an inference, but when it does, it is typically correct. We explore which usage characteristics, such as using privacy enhancing technologies, are associated with Googles accuracy, but found no significant results.

قيم البحث

اقرأ أيضاً

To partly address peoples concerns over web tracking, Google has created the Ad Settings webpage to provide information about and some choice over the profiles Google creates on users. We present AdFisher, an automated tool that explores how user beh aviors, Googles ads, and Ad Settings interact. AdFisher can run browser-based experiments and analyze data using machine learning and significance tests. Our tool uses a rigorous experimental design and statistical analysis to ensure the statistical soundness of our results. We use AdFisher to find that the Ad Settings was opaque about some features of a users profile, that it does provide some choice on ads, and that these choices can lead to seemingly discriminatory ads. In particular, we found that visiting webpages associated with substance abuse changed the ads shown but not the settings page. We also found that setting the gender to female resulted in getting fewer instances of an ad related to high paying jobs than setting it to male. We cannot determine who caused these findings due to our limited visibility into the ad ecosystem, which includes Google, advertisers, websites, and users. Nevertheless, these results can form the starting point for deeper investigations by either the companies themselves or by regulatory bodies.
Membership Inference Attack (MIA) determines the presence of a record in a machine learning models training data by querying the model. Prior work has shown that the attack is feasible when the model is overfitted to its training data or when the adv ersary controls the training algorithm. However, when the model is not overfitted and the adversary does not control the training algorithm, the threat is not well understood. In this paper, we report a study that discovers overfitting to be a sufficient but not a necessary condition for an MIA to succeed. More specifically, we demonstrate that even a well-generalized model contains vulnerable instances subject to a new generalized MIA (GMIA). In GMIA, we use novel techniques for selecting vulnerable instances and detecting their subtle influences ignored by overfitting metrics. Specifically, we successfully identify individual records with high precision in real-world datasets by querying black-box machine learning models. Further we show that a vulnerable record can even be indirectly attacked by querying other related records and existing generalization techniques are found to be less effective in protecting the vulnerable instances. Our findings sharpen the understanding of the fundamental cause of the problem: the unique influences the training instance may have on the model.
Previous work showed that reCAPTCHA v2s image challenges could be solved by automated programs armed with Deep Neural Network (DNN) image classifiers and vision APIs provided by off-the-shelf image recognition services. In response to emerging threat s, Google has made significant updates to its image reCAPTCHA v2 challenges that can render the prior approaches ineffective to a great extent. In this paper, we investigate the robustness of the latest version of reCAPTCHA v2 against advanced object detection based solvers. We propose a fully automated object detection based system that breaks the most advanced challenges of reCAPTCHA v2 with an online success rate of 83.25%, the highest success rate to date, and it takes only 19.93 seconds (including network delays) on average to crack a challenge. We also study the updated security features of reCAPTCHA v2, such as anti-recognition mechanisms, improved anti-bot detection techniques, and adjustable security preferences. Our extensive experiments show that while these security features can provide some resistance against automated attacks, adversaries can still bypass most of them. Our experimental findings indicate that the recent advances in object detection technologies pose a severe threat to the security of image captcha designs relying on simple object detection as their underlying AI problem.
Artificial Intelligence systems require a through assessment of different pillars of trust, namely, fairness, interpretability, data and model privacy, reliability (safety) and robustness against against adversarial attacks. While these research prob lems have been extensively studied in isolation, an understanding of the trade-off between different pillars of trust is lacking. To this extent, the trade-off between fault tolerance, privacy and adversarial robustness is evaluated for the specific case of Deep Neural Networks, by considering two adversarial settings under a security and a privacy threat model. Specifically, this work studies the impact of the fault tolerance of the Neural Network on training the model by adding noise to the input (Adversarial Robustness) and noise to the gradients (Differential Privacy). While training models with noise to inputs, gradients or weights enhances fault tolerance, it is observed that adversarial robustness and fault tolerance are at odds with each other. On the other hand, ($epsilon,delta$)-Differentially Private models enhance the fault tolerance, measured using generalisation error, theoretically has an upper bound of $e^{epsilon} - 1 + delta$. This novel study of the trade-off between different elements of trust is pivotal for training a model which satisfies the requirements for different pillars of trust simultaneously.
The persistent growth in phishing and the rising volume of phishing websites has led to individuals and organizations worldwide becoming increasingly exposed to various cyber-attacks. Consequently, more effective phishing detection is required for im proved cyber defence. Hence, in this paper we present a deep learning-based approach to enable high accuracy detection of phishing sites. The proposed approach utilizes convolutional neural networks (CNN) for high accuracy classification to distinguish genuine sites from phishing sites. We evaluate the models using a dataset obtained from 6,157 genuine and 4,898 phishing websites. Based on the results of extensive experiments, our CNN based models proved to be highly effective in detecting unknown phishing sites. Furthermore, the CNN based approach performed better than traditional machine learning classifiers evaluated on the same dataset, reaching 98.2% phishing detection rate with an F1-score of 0.976. The method presented in this paper compares favourably to the state-of-the art in deep learning based phishing website detection.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا