ﻻ يوجد ملخص باللغة العربية
Ginzburg-Landau vortices in superconductors attract or repel depending on whether the value of the coupling constant is less than 1 or larger than 1. At critical coupling it was previously observed that a strongly localised magnetic impurity behaves very similarly to a vortex. This remains true for axially symmetric configurations away from critical coupling. In particular, a delta function impurity of a suitable strength is related to a vortex configuration without impurity by singular gauge transformation. However, the interaction of vortices and impurities is more subtle and depends not only on the coupling constant and the impurity strength, but also on how broad the impurity is. Furthermore, the interaction typically depends on the distance and may be attractive at short distances and repulsive at long distances. Numerical simulations confirm moduli space approximation results for the scattering of one and two vortices with an impurity. However, a double vortex will split up when scattering with an impurity, and the direction of the split depends on the sign of the impurity. Head-on collisions of a single vortex with different impurities away from critical coupling is also briefly discussed.
We investigate the dynamics of BPS vortices in the presence of magnetic impurities taking the form of axially-symmetric localised lumps and delta-functions. We present numerical results for vortices on flat space, as well as exact results for vortice
Superfluid vortices are quantum excitations carrying quantized amount of orbital angular momentum in a phase where global symmetry is spontaneously broken. We address a question of whether magnetic vortices in superconductors with dynamical gauge fie
The magnetic order of the triangular lattice with antiferromagnetic interactions is described by an SO(3) field and allows for the presence of Z2 magnetic vortices as defects. In this work we show how these Z2 vortices can be fitted into a local SU(2
A propagation torsion model for quantized vortices is proposed.The model is applied to superfluids and liquid Helium II.
We study the properties of a single magnetic vortex and magnetic vortex lattices in a generalization of the Abelian Higgs model containing the simplest derivative interaction that preserves the $U(1)$ gauge symmetry of the original model. The paper i