ﻻ يوجد ملخص باللغة العربية
We study the properties of a single magnetic vortex and magnetic vortex lattices in a generalization of the Abelian Higgs model containing the simplest derivative interaction that preserves the $U(1)$ gauge symmetry of the original model. The paper is motivated by the study of finite isospin chiral perturbation theory in a uniform, external : since pions are Goldstone bosons of QCD (due to chiral symmetry breaking by the QCD vacuum), they interact through momentum dependent terms. We introduce a uniform external magnetic field and find the asymptotic properties of single vortex solutions and compare them to the well-known solutions of the standard Abelian Higgs Model. Furthermore, we study the vortex lattice solutions near the upper critical field using the method of successive approximations, which was originally used by Abrikosov in his seminal paper on type-II superconductors. We find the vortex lattice structure, which remains hexagonal as in the standard Abelian Higgs model, and condensation energy of the vortex lattices relative to the normal vacuum (in a uniform magnetic field).
A formulation of the linear $sigma$ model with derivative interactions is studied. The classical theory is on-shell equivalent to the $sigma$ model with the standard quartic Higgs potential. The mass of the scalar mode only appears in the quadratic p
The compact Abelian Higgs model is simulated on a cubic lattice where it possesses vortex lines and pointlike magnetic monopoles as topological defects. The focus of this high-precision Monte Carlo study is on the vortex network, which is investigate
The magnetic order of the triangular lattice with antiferromagnetic interactions is described by an SO(3) field and allows for the presence of Z2 magnetic vortices as defects. In this work we show how these Z2 vortices can be fitted into a local SU(2
We show that Abelian Higgs Models with dielectric function defined on the noncommutative plane enjoy self-dual vorticial solutions. By choosing a particular form of the dielectric function, we provide a family of solutions whose Higgs and magnetic fi
We construct an extension of the Abelian Higgs model, which consists of a complex scalar field by including an additional real, electromagnetically neutral scalar field. We couple this real scalar field to the complex scalar field via a quartic coupl