ترغب بنشر مسار تعليمي؟ اضغط هنا

Microwave Conductivity of Ferroelectric Domains and Domain Walls in Hexagonal Rare-earth Ferrite

125   0   0.0 ( 0 )
 نشر من قبل Xiaoyu Wu
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the nanoscale electrical imaging results in hexagonal $Lu_{0.6}Sc_{0.4}FeO_3$ single crystals using conductive atomic force microscopy (C-AFM) and scanning microwave impedance microscopy (MIM). While the dc and ac response of the ferroelectric domains can be explained by the surface band bending, the drastic enhancement of domain wall (DW) ac conductivity is clearly dominated by the dielectric loss due to DW vibration rather than mobile-carrier conduction. Our work provides a unified physical picture to describe the local conductivity of ferroelectric domains and domain walls, which will be important for future incorporation of electrical conduction, structural dynamics, and multiferroicity into high-frequency nano-devices.

قيم البحث

اقرأ أيضاً

Domain walls (DWs) in ferroic materials, across which the order parameter abruptly changes its orientation, can host emergent properties that are absent in the bulk domains. Using a broadband ($10^6-10^{10}$ Hz) scanning impedance microscope, we show that the electrical response of the interlocked antiphase boundaries and ferroelectric domain walls in hexagonal rare-earth manganites ($h-RMnO_3$) is dominated by the bound-charge oscillation rather than free-carrier conduction at the DWs. As a measure of the rate of energy dissipation, the effective conductivity of DWs on the (001) surfaces of $h-RMnO_3$ at GHz frequencies is drastically higher than that at dc, while the effect is absent on surfaces with in-plane polarized domains. First-principles and model calculations indicate that the frequency range and selection rules are consistent with the periodic sliding of the DW around its equilibrium position. This acoustic-wave-like mode, which is associated with the synchronized oscillation of local polarization and apical oxygen atoms, is localized perpendicular to the DW but free to propagate along the DW plane. Our results break the ground to understand structural DW dynamics and exploit new interfacial phenomena for novel devices.
Ferroelectric domain walls are attracting broad attention as atomic-scale switches, diodes and mobile wires for next-generation nanoelectronics. Charged domain walls in improper ferroelectrics are particularly interesting as they offer multifunctiona l properties and an inherent stability not found in proper ferroelectrics. Here we study the energetics and structure of charged walls in improper ferroelectric YMnO$_3$, InMnO$_3$ and YGaO$_3$ by first principles calculations and phenomenological modeling. Positively and negatively charged walls are asymmetric in terms of local structure and width, reflecting that polarization is not the driving force for domain formation. The wall width scales with the amplitude of the primary structural order parameter and the coupling strength to the polarization. We introduce general rules for how to engineer $n$- and $p$-type domain wall conductivity based on the domain size, polarization and electronic band gap. This opens the possibility of fine-tuning the local transport properties and design $p$-$n$-junctions for domain wall-based nano-circuitry.
Although enhanced conductivity at ferroelectric domain boundaries has been found in BiFeO$_3$ films, Pb(Zr,Ti)O$_3$ films, and hexagonal rare-earth manganite single crystals, the mechanism of the domain wall conductivity is still under debate. Using conductive atomic force microscopy, we observe enhanced conductance at the electrically-neutral domain walls in semiconducting hexagonal ferroelectric TbMnO$_3$ thin films where the structure and polarization direction are strongly constrained along the c-axis. This result indicates that domain wall conductivity in ferroelectric rare-earth manganites is not limited to charged domain walls. We show that the observed conductivity in the TbMnO$_3$ films is governed by a single conduction mechanism, namely, the back-to-back Schottky diodes model tuned by the segregation of defects.
Materials with long-range order like ferromagnetism or ferroelectricity exhibit uniform, yet differently oriented three-dimensional regions called domains that are separated by two-dimensional topological defects termed domain wallscite{Tagantsev2010 ,AlexHubert1998}. A change of the ordered state across a domain wall can lead to local non-bulk properties such as enhanced conductance or the promotion of unusual phasescite{Seidel2009,Meier2012,Farokhipoor2014}. Although highly desirable, controlled transfer of these exciting properties between the bulk and the walls is usually not possible. Here we demonstrate this crossover from three- to two-dimensions for confining multiferroic Dy$_{0.7}$Tb$_{0.3}$FeO$_3$ domains into multiferroic domain walls at a specified location within a non-multiferroic environment. This process is fully reversible; an applied magnetic or electric field controls the transformation. Aside from the aspect of magnetoelectric functionality, such interconversion can be key to tailoring elusive domain architectures such as in antiferromagnets.
The effect of magnetic domain boundaries displacement induced by electric field is observed in epitaxial ferrite garnet films (on substrates with the (210) crystallographic orientation). The effect is odd with respect to the electric field (the direc tion of wall displacement changes with the polarity of the voltage) and even with respect to the magnetization in domains. The inhomogeneous magnetoelectric interaction as a possible mechanism of the effect is proposed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا