ترغب بنشر مسار تعليمي؟ اضغط هنا

Identifying High-Quality Chinese News Comments Based on Multi-Target Text Matching Model

95   0   0.0 ( 0 )
 نشر من قبل Shuming Ma
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

With the development of information technology, there is an explosive growth in the number of online comment concerning news, blogs and so on. The massive comments are overloaded, and often contain some misleading and unwelcome information. Therefore, it is necessary to identify high-quality comments and filter out low-quality comments. In this work, we introduce a novel task: high-quality comment identification (HQCI), which aims to automatically assess the quality of online comments. First, we construct a news comment corpus, which consists of news, comments, and the corresponding quality label. Second, we analyze the dataset, and find the quality of comments can be measured in three aspects: informativeness, consistency, and novelty. Finally, we propose a novel multi-target text matching model, which can measure three aspects by referring to the news and surrounding comments. Experimental results show that our method can outperform various baselines by a large margin on the news dataset.



قيم البحث

اقرأ أيضاً

103 - Boer Lyu , Lu Chen , Su Zhu 2021
Chinese short text matching is a fundamental task in natural language processing. Existing approaches usually take Chinese characters or words as input tokens. They have two limitations: 1) Some Chinese words are polysemous, and semantic information is not fully utilized. 2) Some models suffer potential issues caused by word segmentation. Here we introduce HowNet as an external knowledge base and propose a Linguistic knowledge Enhanced graph Transformer (LET) to deal with word ambiguity. Additionally, we adopt the word lattice graph as input to maintain multi-granularity information. Our model is also complementary to pre-trained language models. Experimental results on two Chinese datasets show that our models outperform various typical text matching approaches. Ablation study also indicates that both semantic information and multi-granularity information are important for text matching modeling.
This paper investigates how to correct Chinese text errors with types of mistaken, missing and redundant characters, which is common for Chinese native speakers. Most existing models based on detect-correct framework can correct mistaken characters e rrors, but they cannot deal with missing or redundant characters. The reason is that lengths of sentences before and after correction are not the same, leading to the inconsistence between model inputs and outputs. Although the Seq2Seq-based or sequence tagging methods provide solutions to the problem and achieved relatively good results on English context, but they do not perform well in Chinese context according to our experimental results. In our work, we propose a novel detect-correct framework which is alignment-agnostic, meaning that it can handle both text aligned and non-aligned occasions, and it can also serve as a cold start model when there are no annotated data provided. Experimental results on three datasets demonstrate that our method is effective and achieves the best performance among existing published models.
Neural network-based approaches have become the driven forces for Natural Language Processing (NLP) tasks. Conventionally, there are two mainstream neural architectures for NLP tasks: the recurrent neural network (RNN) and the convolution neural netw ork (ConvNet). RNNs are good at modeling long-term dependencies over input texts, but preclude parallel computation. ConvNets do not have memory capability and it has to model sequential data as un-ordered features. Therefore, ConvNets fail to learn sequential dependencies over the input texts, but it is able to carry out high-efficient parallel computation. As each neural architecture, such as RNN and ConvNets, has its own pro and con, integration of different architectures is assumed to be able to enrich the semantic representation of texts, thus enhance the performance of NLP tasks. However, few investigation explores the reconciliation of these seemingly incompatible architectures. To address this issue, we propose a hybrid architecture based on a novel hierarchical multi-granularity attention mechanism, named Multi-granularity Attention-based Hybrid Neural Network (MahNN). The attention mechanism is to assign different weights to different parts of the input sequence to increase the computation efficiency and performance of neural models. In MahNN, two types of attentions are introduced: the syntactical attention and the semantical attention. The syntactical attention computes the importance of the syntactic elements (such as words or sentence) at the lower symbolic level and the semantical attention is used to compute the importance of the embedded space dimension corresponding to the upper latent semantics. We adopt the text classification as an exemplifying way to illustrate the ability of MahNN to understand texts.
Short text matching often faces the challenges that there are great word mismatch and expression diversity between the two texts, which would be further aggravated in languages like Chinese where there is no natural space to segment words explicitly. In this paper, we propose a novel lattice based CNN model (LCNs) to utilize multi-granularity information inherent in the word lattice while maintaining strong ability to deal with the introduced noisy information for matching based question answering in Chinese. We conduct extensive experiments on both document based question answering and knowledge based question answering tasks, and experimental results show that the LCNs models can significantly outperform the state-of-the-art matching models and strong baselines by taking advantages of better ability to distill rich but discriminative information from the word lattice input.
Amid the pandemic COVID-19, the world is facing unprecedented infodemic with the proliferation of both fake and real information. Considering the problematic consequences that the COVID-19 fake-news have brought, the scientific community has put effo rt to tackle it. To contribute to this fight against the infodemic, we aim to achieve a robust model for the COVID-19 fake-news detection task proposed at CONSTRAINT 2021 (FakeNews-19) by taking two separate approaches: 1) fine-tuning transformers based language models with robust loss functions and 2) removing harmful training instances through influence calculation. We further evaluate the robustness of our models by evaluating on different COVID-19 misinformation test set (Tweets-19) to understand model generalization ability. With the first approach, we achieve 98.13% for weighted F1 score (W-F1) for the shared task, whereas 38.18% W-F1 on the Tweets-19 highest. On the contrary, by performing influence data cleansing, our model with 99% cleansing percentage can achieve 54.33% W-F1 score on Tweets-19 with a trade-off. By evaluating our models on two COVID-19 fake-news test sets, we suggest the importance of model generalization ability in this task to step forward to tackle the COVID-19 fake-news problem in online social media platforms.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا