ﻻ يوجد ملخص باللغة العربية
We report the observation of sharp suppression of superconductivity-induced zero-bias conductance peaks at low magnetic fields in InSb nanowire Josephson quantum dot devices. With multiple gates, the quantum dot devices can be tuned to the Kondo-superconductivity interplaying regime, in which Kondo-enhanced superconductivity manifests as a zero-bias conductance peak. In weak magnetic fields, the zero-bias conductance peak is found to exhibit an unusual negative magnetoresistance when the Kondo temperature is comparable to the superconductor gap. The observation could not be explained by magnetic field induced 0-$pi$ phase transition, topological phase transition, or other known mechanisms, but may arise from correlation induced interference when Cooper pairs cotunnel through the quantum dots.
Signatures of Majorana zero modes (MZMs), which are the building blocks for fault-tolerant topological quantum computing, have been observed in semiconductor nanowires (NW) with strong spin-orbital-interaction (SOI), such as InSb and InAs NWs with pr
Hybrid superconductor-semiconducting nanowire devices provide an ideal platform to investigating novel intragap bound states, such as the Andreev bound states (ABSs), Yu-Shiba-Rusinov (YSR) states, and the Majorana bound states. The competition betwe
Hybrid InSb nanowire-superconductor devices are promising for investigating Majorana modes and topological quantum computation in solid-state devices. An experimental realisation of ballistic, phase-coherent superconductor-nanowire hybrid devices is
We analyze, from a quantum information theory perspective, the possibility of realizing a SU(4) entangled Kondo regime in semiconductor double quantum dot devices. We focus our analysis on the ground state properties and consider the general experime
We study hysteretic magnetoresistance in InSb nanowires due to stray magnetic fields from CoFe micromagnets. Devices without any ferromagnetic components show that the magnetoresistance of InSb nanowires commonly exhibits either a local maximum or lo