ﻻ يوجد ملخص باللغة العربية
The present work includes an analytical investigation of a collapsing spherical star in f (R) gravity. The interior of the collapsing star admits a conformal flatness. Information regarding the fate of the collapse is extracted from the matching conditions of the extrinsic curvature and the Ricci curvature scalar across the boundary hypersurface of the star. The radial distribution of the physical quantities such as density, anisotropic pressure and radial heat flux are studied. The inhomogeneity of the collapsing interior leads to a non-zero acceleration. The divergence of this acceleration and the loss of energy through a heat conduction forces the rate of the collapse to die down and the formation of a zero proper volume singularity is realized only asymptotically.
We investigate the geometrical and physical structures of a pseudo-symmetric spacetime $(PS)_4$ with timelike vector under the condition of conformal flatness. We classify it into two possible types: constant Ricci scalar and closed velocity vector.
We derive a new interior solution for stellar compact objects in $fmathcal{(R)}$ gravity assuming a differential relation to constrain the Ricci curvature scalar. To this aim, we consider specific forms for the radial component of the metric and the
In this article we try to present spherically symmetric isotropic strange star model under the framework of $f(R,mathcal{T})$ theory of gravity. To this end, we consider that the Lagrangian density is an arbitrary linear function of the Ricci scalar
In the context of f(R)=R + alpha R^2 gravity, we study the existence of neutron and quark stars with no intermediate approximations in the generalised system of Tolman-Oppenheimer-Volkov equations. Analysis shows that for positive alphas the scalar c
For the accurate understanding of compact objects such as neutron stars and strange stars, the Tolmann-Openheimer-Volkof (TOV) equation has proved to be of great use. Hence, in this work, we obtain the TOV equation for the energy-momentum-conserved $