ترغب بنشر مسار تعليمي؟ اضغط هنا

Possible Counter Rotation between the Disk and Protostellar Envelope around the Class I Protostar IRAS 04169+2702

75   0   0.0 ( 0 )
 نشر من قبل Shigehisa Takakuwa
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present results from our SMA observations and data analyses of the SMA archival data of the Class I protostar IRAS 04169+2702. The high-resolution (~0.5) $^{13}$CO (3-2) image cube shows a compact ($r$ ~< 100 au) structure with a northwest (blue) to southeast (red) velocity gradient, centered on the 0.9-mm dust-continuum emission. The direction of the velocity gradient is orthogonal to the axis of the molecular outflow as seen in the SMA $^{12}$CO (2-1) data. A similar gas component is seen in the SO (6$_5$-5$_4$) line. On the other hand, the C$^{18}$O (2-1) emission traces a more extended ($r$ ~400 au) component with the opposite, northwest (red) to southeast (blue) velocity gradient. Such opposite velocity gradients in the different molecular lines are also confirmed from direct fitting to the visibility data. We have constructed models of a forward-rotating and counter-rotating Keplerian disk and a protostellar envelope, including the SMA imaging simulations. The counter-rotating model could better reproduce the observed velocity channel maps, although we could not obtain statistically significant fitting results. The derived model parameters are; Keplerian radius of 200 au, central stellar mass of 0.1 $M_{solar}$, and envelope rotational and infalling velocities of 0.20 km s$^{-1}$ and 0.16 km s$^{-1}$, respectively. One possible interpretation for these results is the effect of the magnetic field in the process of disk formation around protostars, $i.e.$, Hall effect.

قيم البحث

اقرأ أيضاً

73 - John J. Tobin 2018
We present a characterization of the protostar embedded within the BHR7 dark cloud, based on both photometric measurements from the near-infrared to millimeter and interferometric continuum and molecular line observations at millimeter wavelengths. W e find that this protostar is a Class 0 system, the youngest class of protostars, measuring its bolometric temperature to be 50.5~K, with a bolometric luminosity of 9.3~L$_{odot}$. The near-infrared and textit{Spitzer} imaging show a prominent dark lane from dust extinction separating clear bipolar outflow cavities. Observations of $^{13}$CO ($J=2rightarrow1$), C$^{18}$O ($J=2rightarrow1$), and other molecular lines with the Submillimeter Array (SMA) exhibit a clear rotation signature on scales $<$1300~AU. The rotation can be traced to an inner radius of $sim$170~AU and the rotation curve is consistent with an R$^{-1}$ profile, implying that angular momentum is being conserved. Observations of the 1.3~mm dust continuum with the SMA reveal a resolved continuum source, extended in the direction of the dark lane, orthogonal to the outflow. The deconvolved size of the continuum indicates a radius of $sim$100~AU for the continuum source at the assumed distance of 400~pc. The visibility amplitude profile of the continuum emission cannot be reproduced by an envelope alone and needs a compact component. Thus, we posit that the resolved continuum source could be tracing a Keplerian disk in this very young system. If we assume that the continuum radius traces a Keplerian disk (R$sim$120~AU) the observed rotation profile is consistent with a protostar mass of 1.0~$M_{odot}$.
Sub-arcsecond images of the rotational line emission of CS and SO have been obtained toward the Class I protostar IRAS 04365$+$2535 in TMC-1A with ALMA. A compact component around the protostar is clearly detected in the CS and SO emission. The veloc ity structure of the compact component of CS reveals infalling-rotating motion conserving the angular momentum. It is well explained by a ballistic model of an infalling-rotating envelope with the radius of the centrifugal barrier (a half of the centrifugal radius) of 50 AU, although the distribution of the infalling gas is asymmetric around the protostar. The distribution of SO is mostly concentrated around the radius of the centrifugal barrier of the simple model. Thus a drastic change in chemical composition of the gas infalling onto the protostar is found to occur at a 50 AU scale probably due to accretion shocks, demonstrating that the infalling material is significantly processed before being delivered into the disk.
150 - John J. Tobin 2013
We present high-resolution sub/millimeter interferometric imaging of the Class 0 protostar L1527 IRS (IRAS 04368+2557) at 870 micron and 3.4 mm from the Submillimeter Array (SMA) and Combined Array for Research in Millimeter Astronomy (CARMA). We det ect the signature of an edge-on disk surrounding the protostar with an observed diameter of 180 AU in the sub/millimeter images. The mass of the disk is estimated to be 0.007 M_sun, assuming optically thin, isothermal dust emission. The millimeter spectral index is observed to be quite shallow at all the spatial scales probed; alpha ~ 2, implying a dust opacity spectral index beta ~ 0. We model the emission from the disk and surrounding envelope using Monte Carlo radiative transfer codes, simultaneously fitting the sub/millimeter visibility amplitudes, sub/millimeter images, resolved Larcmin image, spectral energy distribution, and mid-infrared spectrum. The best fitting model has a disk radius of R = 125 AU, is highly flared (H ~ R^1.3), has a radial density profile rho ~ R^-2.5, and has a mass of 0.0075 M_sun. The scale height at 100 AU is 48 AU, about a factor of two greater than vertical hydrostatic equilibrium. The resolved millimeter observations indicate that disks may grow rapidly throughout the Class 0 phase. The mass and radius of the young disk around L1527 is comparable to disks around pre-main sequence stars; however, the disk is considerably more vertically extended, possibly due to a combination of lower protostellar mass, infall onto the disk upper layers, and little settling of ~1 micron-sized dust grains.
Sub-millimeter spectral line and continuum emission from the protoplanetary disks and envelopes of protostars are powerful probes of their structure, chemistry, and dynamics. Here we present a benchmark study of our modeling code, RadChemT, that for the first time uses a chemical model to reproduce ALMA C$^{18}$O (2-1) and CARMA $^{12}$CO (1-0) and N$_{2}$H$^{+}$ (1-0) observations of L1527, that allow us to distinguish the disk, the infalling envelope and outflow of this Class 0/I protostar. RadChemT combines dynamics, radiative transfer, gas chemistry and gas-grain reactions to generate models which can be directly compared with observations for individual protostars. Rather than individually fit abundances to a large number of free parameters, we aim to best match the spectral line maps by (i) adopting a physical model based on density structure and luminosity derived primarily from previous work that fit SED and 2D imaging data, updating it to include a narrow jet detected in CARMA and ALMA data near ($leq 75$au) the protostar, and then (ii) computing the resulting astrochemical abundances for 292 chemical species. Our model reproduces the C$^{18}$O and N$_{2}$H$^{+}$ line strengths within a factor of 3.0; this is encouraging considering the pronounced abundance variation (factor $> 10^3$) between the outflow shell and CO snowline region near the midplane. Further, our modeling confirms suggestions regarding the anti-correlation between N$_{2}$H$^{+}$ and the CO snowline between 400 au to 2,000 au from the central star. Our modeling tools represent a new and powerful capability with which to exploit the richness of spectral line imaging provided by modern submillimeter interferometers.
We present new spectral line observations of the CH3CN molecule in the accretion disk around the massive protostar IRAS 20126+4104 with the Submillimeter Array that for the first time measure the disk density, temperature, and rotational velocity wit h sufficient resolution (0.37, equivalent to ~600 AU) to assess the gravitational stability of the disk through the Toomre-Q parameter. Our observations resolve the central 2000 AU region that shows steeper velocity gradients with increasing upper state energy, indicating an increase in the rotational velocity of the hotter gas nearer the star. Such spin-up motions are characteristics of an accretion flow in a rotationally supported disk. We compare the observed data with synthetic image cubes produced by three-dimensional radiative transfer models describing a thin flared disk in Keplerian motion enveloped within the centrifugal radius of an angular-momentum-conserving accretion flow. Given a luminosity of 1.3x10^4 Lsun, the optimized model gives a disk mass of 1.5 Msun and a radius of 858 AU rotating about a 12.0 Msun protostar with a disk mass accretion rate of 3.9x10^{-5} Msun/yr. Our study finds that, in contrast to some theoretical expectations, the disk is hot and stable to fragmentation with Q > 2.8 at all radii which permits a smooth accretion flow. These results put forward the first constraints on gravitational instabilities in massive protostellar disks, which are closely connected to the formation of companion stars and planetary systems by fragmentation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا