ﻻ يوجد ملخص باللغة العربية
Consider a sequence $X^n$ of length $n$ emitted by a Discrete Memoryless Source (DMS) with unknown distribution $p_X$. The objective is to construct a lossless source code that maps $X^n$ to a sequence $widehat{Y}^m$ of length $m$ that is indistinguishable, in terms of Kullback-Leibler divergence, from a sequence emitted by another DMS with known distribution $p_Y$. The main result is the existence of a coding scheme that performs this task with an optimal ratio $m/n$ equal to $H(X)/H(Y)$, the ratio of the Shannon entropies of the two distributions, as $n$ goes to infinity. The coding scheme overcomes the challenges created by the lack of knowledge about $p_X$ by a type-based universal lossless source coding scheme that produces as output an almost uniformly distributed sequence, followed by another type-based coding scheme that jointly performs source resolvability and universal lossless source coding. The result recovers and extends previous results that either assume $p_X$ or $p_Y$ uniform, or $p_X$ known. The price paid for these generalizations is the use of common randomness with vanishing rate, whose length scales as the logarithm of $n$. By allowing common randomness larger than the logarithm of $n$ but still negligible compared to $n$, a constructive low-complexity encoding and decoding counterpart to the main result is also provided for binary sources by means of polar codes.
We show that the Extrinsic Information about the coded bits of any good (capacity achieving) code operating over a wide class of discrete memoryless channels (DMC) is zero when channel capacity is below the code rate and positive constant otherwise,
We develop a low-complexity coding scheme to achieve covert communications over binary-input discrete memoryless channels (BI-DMCs). We circumvent the impossibility of covert communication with linear codes by introducing non-linearity through the us
We derive a lower and upper bound on the reliability function of discrete memoryless multiple-access channel (MAC) with noiseless feedback and variable-length codes (VLCs). For the upper-bound, we use proof techniques of Burnashev for the point-to-po
A memoryless state-dependent broadcast channel (BC) is considered, where the transmitter wishes to convey two private messages to two receivers while simultaneously estimating the respective states via generalized feedback. The model at hand is motiv
A method is proposed, called channel polarization, to construct code sequences that achieve the symmetric capacity $I(W)$ of any given binary-input discrete memoryless channel (B-DMC) $W$. The symmetric capacity is the highest rate achievable subject