ﻻ يوجد ملخص باللغة العربية
The impact of uni-axial compressive and tensile strain and diameter on the electronic band structure of indium arsenide (InAs) nanowires (NWs) is investigated using first principles calculations. Effective masses and band gaps are extracted from the electronic structure for relaxed and strained nanowires. Material properties are extracted and applied to determine charge transport through the NWs described within the effective mass approximation and by applying the non-equilibrium Greens function method. The transport calculations self-consistently solve the Schrodinger equation with open boundary conditions and Poissons equation for the electrostatics. The device structure corresponds to a metal oxide semiconductor field effect transistor (MOSFET) with an InAs NW channel in a gate-all-around geometry. The channel cross sections are for highly scaled devices within a range of 3x3 nm2 to 1x1 nm2. Strain effects on the band structures and electrical performance are evaluated for different NW orientations and diameters by quantifying subthreshold swing and ON/OFF current ratio. Our results reveal for InAs NW transistors with critical dimensions of a few nanometer, the crystallographic orientation and quantum confinement effects dominate device behavior, nonetheless strain effects must be included to provide accurate predictions of transistor performance.
Electrical characterization of few-layer MoS2 based field effect transistors with Ti/Au electrodes is performed in the vacuum chamber of a scanning electron microscope in order to study the effects of electron beam irradiation on the transport proper
Quantum computation by non-Abelian Majorana zero modes (MZMs) offers an approach to achieve fault tolerance by encoding quantum information in the non-local charge parity states of semiconductor nanowire networks in the topological superconductor reg
In this paper we review the theory of silicon nanowires. We focus on nanowires with diameters below 10 nm, where quantum effects become important and the properties diverge significantly from those of bulk silicon. These wires can be efficiently trea
Luminescent colloidal CdSe nanorings are a new type of semiconductor structure that have attracted interest due to the potential for unique physics arising from their non-trivial toroidal shape. However, the exciton properties and dynamics of these m
We present a novel optical transient absorption and reflection microscope based on a diffraction-limited pump pulse in combination with a wide-field probe pulse, for the spatio-temporal investigation of ultrafast population transport in thin films. T