ﻻ يوجد ملخص باللغة العربية
Operators in ergodic spin-chains are found to grow according to hydrodynamical equations of motion. The study of such operator spreading has aided our understanding of many-body quantum chaos in spin-chains. Here we initiate the study of operator spreading in quantum maps on a torus, systems which do not have a tensor-product Hilbert space or a notion of spatial locality. Using the perturbed Arnold cat map as an example, we analytically compare and contrast the evolutions of functions on classical phase space and quantum operator evolutions, and identify distinct timescales that characterize the dynamics of operators in quantum chaotic maps. Until an Ehrenfest time, the quantum system exhibits classical chaos, i.e. it mimics the behavior of the corresponding classical system. After an operator scrambling time, the operator looks random in the initial basis, a characteristic feature of quantum chaos. These timescales can be related to the quasi-energy spectrum of the unitary via the spectral form factor. Furthermore, we show examples of emergent classicality in quantum problems far away from the classical limit. Finally, we study operator evolution in non-chaotic and mixed quantum maps using the Chirikov standard map as an example.
We study the geometrical characteristic of quasi-static fractures in disordered media, using iterated conformal maps to determine the evolution of the fracture pattern. This method allows an efficient and accurate solution of the Lame equations witho
The quasi-particle picture is a powerful tool to understand the entanglement spreading in many-body quantum systems after a quench. As an input, the structure of the excitations pattern of the initial state must be provided, the common choice being p
Free or integrable theories are usually considered to be too constrained to thermalize. For example, the retarded two-point function of a free field, even in a thermal state, does not decay to zero at long times. On the other hand, the magnetic susce
The quantum kicked rotor (QKR) driven by $d$ incommensurate frequencies realizes the universality class of $d$-dimensional disordered metals. For $d>3$, the system exhibits an Anderson metal-insulator transition which has been observed within the fra
The quantum tricriticality of d-dimensional transverse Ising-like systems is studied by means of a perturbative renormalization group approach focusing on static susceptibility. This allows us to obtain the phase diagram for 3<d<4, with a clear locat