ترغب بنشر مسار تعليمي؟ اضغط هنا

Studying the [OIII]$lambda$5007A emission-line width in a sample of $sim$80 local active galaxies: A surrogate for $sigma_{star}$?

70   0   0.0 ( 0 )
 نشر من قبل Vardha N. Bennert
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

For a sample of $sim$80 local ($0.02 leq z leq 0.1$) Seyfert-1 galaxies with high-quality long-slit Keck spectra and spatially-resolved stellar-velocity dispersion ($sigma_{star}$) measurements, we study the profile of the [OIII]$lambda$5007A emission line to test the validity of using its width as a surrogate for $sigma_{star}$. Such an approach has often been used in the literature, since it is difficult to measure $sigma_{star}$ for type-1 active galactic nuclei (AGNs) due to the AGN continuum outshining the stellar-absorption lines. Fitting the [OIII] line with a single Gaussian or Gauss-Hermite polynomials overestimates $sigma_{star}$ by 50-100%. When line asymmetries from non-gravitational gas motion are excluded in a double Gaussian fit, the average ratio between the core [OIII] width ($sigma_{rm {[OIII],D}}$) and $sigma_{star}$ is $sim$1, but with individual data points off by up to a factor of two. The resulting black-hole-mass-$sigma_{rm {[OIII],D}}$ relation scatters around that of quiescent galaxies and reverberation-mapped AGNs. However, a direct comparison between $sigma_{star}$ and $sigma_{rm {[OIII],D}}$ shows no close correlation, only that both quantities have the same range, average and standard deviation, probably because they feel the same gravitational potential. The large scatter is likely due to the fact that line profiles are a luminosity-weighted average, dependent on the light distribution and underlying kinematic field. Within the range probed by our sample (80-260 km s$^{-1}$), our results strongly caution against the use of [OIII] width as a surrogate for $sigma_{star}$ on an individual basis. Even though our sample consists of radio-quiet AGNs, FIRST radio-detected objects have, on average, a $sim$10% larger [OIII] core width.



قيم البحث

اقرأ أيضاً

We perform SED fitting analysis on a COSMOS sample covering UV-to-FIR wavelengths with emission lines from the FMOS survey. The sample of 182 objects with H$alpha$ and [OIII]$lambda5007$ emission spans over a range of $1.40<rm{z}<1.68$. We obtain rob ust estimates of stellar mass ($10^{9.5}-10^{11.5}~rm{M_odot}$) and SFR ($10^1-10^3~rm{M_odot}~rm{yr}^{-1}$) from the Bayesian analysis with CIGALE fitting continuum photometry and H$alpha$. We obtain a median attenuation of A$_rm{Halpha}=1.16pm0.19$ mag and A$_rm{[OIII]}=1.41pm0.22$ mag. H$alpha$ and [OIII]$lambda5007$ attenuations are found to increase with stellar mass, confirming previous findings. A difference of $57$% in the attenuation experienced by emission lines and continuum is found in agreement with the lines being more attenuated than the continuum. New CLOUDY HII-region models in CIGALE enable good fits of H$alpha$, H$beta$, [OIII]$lambda5007$ emission lines with differences smaller than $0.2$ dex. Fitting [NII]$lambda6584$ line is challenging due to well-known discrepancies in the locus of galaxies in the BPT diagram at intermediate redshifts. We find a positive correlation for SFR and dust-corrected L$_rm{[OIII]lambda5007}$ and we derive the linear relation $log_{10}rm{(SFR/rm{M}_odot~rm{yr}^{-1})}=log_{10} (rm{L}_{[rm{OIII]}}/rm{ergs~s^{-1}})-(41.20pm0.02)$. Leaving the slope as a free parameter leads to $log_{10}rm{(SFR/rm{M}_odot~rm{yr}^{-1})}=(0.83pm0.06)log_{10}(rm{L}_{[rm{OIII]}}/rm{ergs~s^{-1}})-(34.01pm2.63)$. Gas-phase metallicity and ionization parameter variations account for a $0.24$ dex and $1.1$ dex of the dispersion, respectively. An average value of $logrm{U}approx-2.85$ is measured for this sample. Including HII-region models to fit simultaneously photometry and emission line fluxes are paramount to analyze future data from surveys such as MOONS and PFS.
We assemble an unbiased sample of 29 galaxies with [O II] $lambda 3727$ and/or [O III] $lambda 5007$ detections at $z < 0.15$ from the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) Pilot Survey (HPS). HPS finds galaxies without pre-selection based on their detected emission lines via integral field spectroscopy. Sixteen of these objects were followed up with the second-generation, low resolution spectrograph (LRS2) on the upgraded Hobby-Eberly Telescope. Oxygen abundances were then derived via strong emission lines using a Bayesian approach. We find most of the galaxies fall along the mass-metallicity relation derived from photometrically selected star forming galaxies in the Sloan Digital Sky Survey (SDSS). However, two of these galaxies have low metallicity (similar to the very rare green pea galaxies in mass-metallicity space). The star formation rates of this sample fall in an intermediate space between the SDSS star forming main sequence and the extreme green pea galaxies. We conclude that spectroscopic selection fills part of the mass-metallicity-SFR phase space that is missed in photometric surveys with pre-selection like SDSS, i.e., we find galaxies that are actively forming stars but are faint in continuum. We use the results of this pilot investigation to make predictions for the upcoming unbiased, large spectroscopic sample of local line emitters from HETDEX. With the larger HETDEX survey we will determine if galaxies selected spectroscopically without continuum brightness pre-selection have metallicities that fall on a continuum that bridges typical star forming and rarer, more extreme systems like green peas.
We present a Hubble Space Telescope (HST) survey of extended [OIII] emission for a sample of 60 Seyfert galaxies (22 Seyfert 1s and 38 Seyfert 2s), selected based on their far infrared properties. The observations for 42 of these galaxies were done i n a snapshot survey with WFPC2. The remaining 18 were obtained from the HST archive, most of which were observed with the same configuration. These observations cover 68% of the objects in the sample defined by Kinney et al. (2000), and create a valuable dataset for the study of the Narrow Line Region (NLR) properties of Seyfert galaxies. In this paper, we present the details of the observations, reductions, and measurements. We also discuss the extended structure of individual sources, and the relation of this emission to the radio and host galaxy morphology. We also address how representative the subsample of [O III]-imaged galaxies is of the entire sample, and possible selection effects that may affect this comparison of the properties of Seyfert 1 and Seyfert 2 galaxies.
We present the results of a Hubble Space Telescope (HST) survey of extended [OIII] emission in a sample of 60 nearby Seyfert galaxies (22 Seyfert 1s and 38 Seyfert 2s), selected by mostly isotropic properties. The comparison between the semi major ax is size of their [OIII] emitting regions (R_Maj) shows that Seyfert 1s and Seyfert 2s have similar distributions, which seems to contradict Unified Model predictions. We discuss possible ways to explain this result, which could be due either to observational limitations or the models used for the comparison with our data. We show that Seyfert 1 Narrow Line Regions (NLRs) are more circular and concentrated than Seyfert 2s, which can be attributed to foreshortening in the former. We find a good correlation between the NLR size and luminosity, following the relation R_Maj propto L([OIII])^0.33, which is flatter than a previous one found for QSOs and Seyfert 2s. We discuss possible reasons for the different results, and their implications to photoionization models. We confirm previous results which show that the [OIII] and radio emission are well aligned, and also find no correlation between the orientation of the extended [OIII] emission and the host galaxy major axis. This agrees with results showing that the torus axis and radio jet are not aligned with the host galaxy rotation axis, indicating that the orientation of the gas in the torus, and not the spin of the black hole, determine the orientation of the accretion disk, and consequently the orientation of the radio jet.
We used the IRAM 30m telescope to observe the frequency range [86-116]GHz towards the central regions of the starburst galaxies M83, M82, and NGC253, the AGNs M51, NGC1068, and NGC7469, and the ULIRGs Arp220 and Mrk231. Assuming LTE conditions, we ca lculated the column densities of 27 molecules and 10 isotopologues. Among others, we report the first tentative detections of CH3CHO, HNCO, and NS in M82 and, for the first time in the extragalactic medium, HC5N in NGC253. Halpha recombination lines were only found in M82 and NGC253. Vibrationally excited lines of HC3N were only detected in Arp220. CH3CCH emission is only seen in the starburst-dominated galaxies. By comparison of the fractional abundances among the galaxies, we looked for the molecules that are best suited to characterise the chemistry of starbursts, AGNs and ULIRGs, as well as the differences among galaxies within the same group.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا