ترغب بنشر مسار تعليمي؟ اضغط هنا

Lambda = 3 mm line survey of nearby active galaxies

161   0   0.0 ( 0 )
 نشر من قبل Rebeca Aladro
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We used the IRAM 30m telescope to observe the frequency range [86-116]GHz towards the central regions of the starburst galaxies M83, M82, and NGC253, the AGNs M51, NGC1068, and NGC7469, and the ULIRGs Arp220 and Mrk231. Assuming LTE conditions, we calculated the column densities of 27 molecules and 10 isotopologues. Among others, we report the first tentative detections of CH3CHO, HNCO, and NS in M82 and, for the first time in the extragalactic medium, HC5N in NGC253. Halpha recombination lines were only found in M82 and NGC253. Vibrationally excited lines of HC3N were only detected in Arp220. CH3CCH emission is only seen in the starburst-dominated galaxies. By comparison of the fractional abundances among the galaxies, we looked for the molecules that are best suited to characterise the chemistry of starbursts, AGNs and ULIRGs, as well as the differences among galaxies within the same group.



قيم البحث

اقرأ أيضاً

We aimed to study the molecular composition of the interstellar medium (ISM) surrounding an Active Galactic Nucleus (AGN), by making an inventory of molecular species and their abundances, as well as to establish a chemical differentiation between st arburst galaxies and AGN. We used the IRAM-30 m telescope to observe the central 1.5-2 kpc region of NGC1068, covering the frequencies between 86.2 GHz and 115.6 GHz. Using Boltzmann diagrams, we calculated the column densities of the detected molecules. We used a chemical model to reproduce the abundances found in the AGN, to determine the origin of each detected species, and to test the influence of UV fields, cosmic rays, and shocks on the ISM. We identified 24 different molecular species and isotopologues, among which HC3N, SO, N2H+, CH3CN, NS, 13CN, and HN13C are detected for the first time in NGC1068. We obtained the upper limits to the isotopic ratios 12C/13C=49, 16O/18O=177 and 32S/34S=5. Our chemical models suggest that the chemistry in the nucleus of NGC1068 is strongly influenced by cosmic rays, although high values of both cosmic rays and far ultraviolet (FUV) radiation fields also explain well the observations. The gas in the nucleus of NGC1068 has a different chemical composition as compared to starburst galaxies. The distinct physical processes dominating galaxy nuclei (e.g. C-shocks, UV fields, X-rays, cosmic rays) leave clear imprints in the chemistry of the gas, which allow to characterise the nucleus activity by its molecular abundances.
438 - D. Rosa Gonzalez 2014
The molecular phase of the interstellar medium (ISM) in galaxies offers fundamental insight for understanding star-formation processes and how stellar feedback affects the nuclear activity of certain galaxies. We present here Large Millimeter Telesco pe spectra obtained with the Redshift Search Receiver, a spectrograph that cover simultaneously the 3 mm band from 74 to 111 GHz with a spectral resolution of around 100 km/s. The observed galaxies that have been detected previously in HCN, have different degrees of nuclear activity, one normal galaxy (NGC 6946), the starburst prototype (M 82) and two ultraluminous infrared galaxies (ULIRGs, IRAS 17208-0014 and Mrk 231). We plotted our data in the HCO+/HCN vs. HCN/13CO diagnostic diagram finding that NGC 6946 and M 82 are located close to other normal galaxies; and that both IRAS 17208-0014 and Mrk 231 are close to the position of the well known ULIRG Arp 220 reported by Snell et al. (2011). We found that in Mrk 231 -- a galaxy with a well known active galactic nucleus -- the HCO+/HCN ratio is similar to the ratio observed in other normal galaxies.
We have conducted a spectral line survey in the 3 mm and 2 mm bands toward two positions in a spiral arm of M51 (NGC 5194) with the IRAM 30 m telescope. In this survey, we have identified 13 molecular species, including CN, CCH, N2H+, HNCO, and CH3OH . Furthermore, 6 isotopologues of the major species have been detected. On the other hand, SiO, HC3N, CH3CN, and the deuterated species such as DCN and DCO+ are not detected. The deuterium fractionation ratios are evaluated to be less than 0.8 % and 1.2 % for DCN/HCN and DCO+/HCO+, respectively. By comparing the results of the two positions with different star formation activities, we have found that the observed chemical compositions do not strongly depend on star formation activities. They seem to reflect a chemical composition averaged over the 1-kpc scale region including many giant molecular clouds. Among the detected molecules CN, CCH, and CH3OH are found to be abundant. High abundances of CN, and CCH are consistent with the above picture of a wide spread distribution of molecules, because they can be produced by photodissociation. On the other hand, it seems likely that CH3OH is liberated into the gas phase by shocks associated with large scale phenomena such as cloud-cloud collisions and/or by non-thermal desorption processes such as photoevaporation due to cosmic-ray induced UV photons. The present result demonstrates a characteristic chemical composition of a giant molecular cloud complex in the spiral arm, which can be used as a standard reference for studying chemistry in AGNs and starbursts.
Spectral line survey observations are conducted toward the high-mass protostar candidate NGC 2264 CMM3 in the 4 mm, 3 mm, and 0.8 mm bands with the Nobeyama 45 m telescope and the Atacama Submillimeter Telescope Experiment (ASTE) 10 m telescope. In t otal, 265 emission lines are detected in the 4 mm and 3 mm bands, and 74 emission lines in the 0.8 mm band. As a result, 36 molecular species and 30 isotopologues are identified. In addition to the fundamental molecular species, many emission lines of carbon-chain molecules such as HC5N, C4H, CCS, and C3S are detected in the 4 mm and 3 mm bands. Deuterated molecular species are also detected with relatively strong intensities. On the other hand, emission lines of complex organic molecules such as HCOOCH3, and CH3OCH3 are found to be weak. For the molecules for which multiple transitions are detected, rotation temperatures are derived to be 7-33 K except for CH3OH. Emission lines with high upper-state energies (Eu > 150 K) are detected for CH3OH, indicating existence of a hot core. In comparison with the chemical composition of the Orion KL, carbon-chain molecules and deuterated molecules are found to be abundant in NGC 2264 CMM3, while sulfur-bearing species and complex organic molecules are deficient. These characteristics indicate chemical youth of NGC 2264 CMM3 in spite of its location at the center of the cluster forming core, NGC 2264 C.
We analyze 3 mm emission of the ultraluminous infrared galaxy Arp 220 for spatially-resolved structure and spectral properties of the merger nuclei. ALMA archival data at ~0.05 resolution are used for extensive visibility fitting and deep imaging of continuum emission. The data are fitted well with two concentric components for each nucleus, such as two Gaussians or one Gaussian plus one exponential disk. The larger components in individual nuclei are similar in shape and extent, ~100-150 pc, to the cm-wave emission due to supernovae. They are therefore identified with the known starburst nuclear disks. The smaller components in both nuclei have about a few 10 pc sizes and peak brightness temperatures (Tb) more than twice higher than in previous single-Gaussian fitting. They correspond to the dust emission that we find centrally concentrated in both nuclei by subtracting the plasma emission measured at 33 GHz. The dust emission in the western nucleus is found to have a peak Tb ~ 530 K and a full width at half maximum of about 20 pc. This component is estimated to have a bolometric luminosity on the order of 10^{12.5} Lsun and a 20 pc-scale luminosity surface density 10^{15.5} Lsun/kpc^2. A luminous AGN is a plausible energy source for these high values while other explanations remain to be explored. Our continuum image also reveals a third structural component of the western nucleus --- a pair of faint spurs perpendicular to the disk major axis. We attribute it to a bipolar outflow from the highly inclined (i ~ 60 deg) western nuclear disk.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا