ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermoelectric determination of electronic entropy change in Ni-doped FeRh

77   0   0.0 ( 0 )
 نشر من قبل Nicolas Perez
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The net entropy change corresponding to the charge carriers in a Ni-doped FeRh bulk polycrystal was experimentally evaluated in a single sample using low temperature heat capacity experiments with applied magnetic field, and using Seebeck effect and Hall coefficient measurements at high temperatures across the first order transition. From the heat capacity data a value for the electronic entropy change (Delta S_{el}approx8.9) J kg(^{-1})K(^{-1}) was extracted, whereas a value of up to 4 J kg(^{-1})K(^{-1}) was obtained form the Seebeck coefficient. Additionally, the analysis of the Seebeck coefficient allows tracing the evolution of the electronic entropy change with applied magnetic field. An increase of the electronic entropy with increasing applied magnetic field is evidenced, as high as 10 percent at 6 T.

قيم البحث

اقرأ أيضاً

We present results of comprehensive study of electronic properties of (TiZrNbCu)(1-x)Ni(x) metallic glasses performed in broad composition range x encompassing both, high entropy (HE) range, and conventional Ni-base alloy concentration range, x >= 0. 35. The electronic structure studied by photoemission spectroscopy and low temperature specific heat (LTSH) reveal a split-band structure of density of states inside valence band with d-electrons of Ti, Zr, Nb and also Ni present at Fermi level N(E_F), whereas LTSH and magnetoresistivity results show that variation of N(E_F) with x changes in Ni-base regime. The variation of superconducting transition temperatures with x closely follows that of N(E_F). The electrical resistivities of all alloys are high and decrease with increasing temperature over most of explored temperature range, and their temperature dependence seems dominated by weak localization effects over a broad temperature range (10-300 K). The preliminary study of Hall effect shows positive Hall coefficient that decreases rapidly in Ni-base alloys.
92 - K. C. Lukas , G. Joshi , K. Modic 2012
The Seebeck coefficients, electrical resistivities, total thermal conductivities, and magnetization are reported for temperatures between 5 and 350 K for n-type Bi0.88Sb0.12 nano-composite alloys made by Ho-doping at the 0, 1 and 3% atomic levels. Th e alloys were prepared using a dc hot-pressing method, and are shown to be single phase for both Ho contents with grain sizes on the average of 900 nm. We find the parent compound has a maximum of ZT = 0.28 at 231 K, while doping 1% Ho increases the maximum ZT to 0.31 at 221 K and the 3% doped sample suppresses the maximum ZT = 0.24 at a temperature of 260 K.
82 - D. Han , R. Moalla , I. Fina 2021
The impact of epitaxial strain on the structural, electronic, and thermoelectric properties of p-type transparent Sr-doped LaCrO3 thin films has been investigated. For this purpose, high-quality fully strained La0.75Sr0.25CrO3 (LSCO) epitaxial thin f ilms were grown by molecular beam epitaxy on three different (pseudo)cubic (001)-oriented perovskite oxide substrates: LaAlO3, (LaAlO3)0.3(Sr2AlTaO6)0.7, and DyScO3. The lattice mismatch between the LSCO films and the substrates induces in-plane strain ranging from -2.06% (compressive) to +1.75% (tensile). The electric conductivity can be controlled over 2 orders of magnitude, ranging from 0.5 S/cm (tensile strain) to 35 S/cm (compressive strain). Consistently, the Seebeck coefficient S can be finely tuned by a factor of almost 2 from 127 microV/K (compressive strain) to 208 microV/K (tensile strain). Interestingly, we show that the thermoelectric power factor can consequently be tuned by almost 2 orders of magnitude. The compressive strain yields a remarkable enhancement by a factor of 3 for 2% compressive strain with respect to almost relaxed films. These results demonstrate that epitaxial strain is a powerful lever to control the electric properties of LSCO and enhance its thermoelectric properties, which is of high interest for various devices and key applications such as thermal energy harvesters, coolers, transparent conductors, photocatalyzers, and spintronic memories.
Using X-ray photoelectron emission microscopy we have observed the coexistence of ferromagnetic and antiferromagnetic phases in a (3 at.%)Pd-doped FeRh epilayer. By quantitatively analyzing the resultant images we observe that as the epilayer transfo rms there is a change in magnetic domain symmetry from predominantly twofold at lower temperatures through to an equally weighted combination of both four and twofold symmetries at higher temperature. It is postulated that the lowered symmetry Ising-like nematic phase resides at the near-surface of the epilayer. This behavior is different to that of undoped FeRh suggesting that the variation in symmetry is driven by the competing structural and electronic interactions in the nanoscale FeRh film coupled with the effect of the chemical doping disorder.
Spin-wave resonance measurements were performed in the mixed magnetic phase regime of a Pd-doped FeRh epilayer that appears as the first-order ferromagnetic-antiferromagnetic phase transition takes place. It is seen that the measured value of the exc hange stiffness is suppressed throughout the measurement range when compared to the expected value of the fully ferromagnetic regime, extracted via the independent means of a measurement of the Curie point, for only slight changes in the ferromagnetic volume fraction. This behavior is attributed to the influence of the antiferromagnetic phase: inspired by previous experiments that show ferromagnetism to be most persistent at the surfaces and interfaces of FeRh thin films, we modelled the antiferromagnetic phase as forming a thin layer in the middle of the epilayer through which the two ferromagnetic layers are coupled up to a certain critical thickness. The development of this exchange stiffness is then consistent with that expected from the development of an exchange coupling across the magnetic phase boundary, as a consequence of a thickness dependent phase transition taking place in the antiferromagnetic regions and is supported by complimentary computer simulations of atomistic spin-dynamics. The development of the Gilbert damping parameter extracted from the ferromagnetic resonance investigations is consistent with this picture.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا