ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase Boundary Exchange Coupling in the Mixed Magnetic Phase Regime of a Pd-doped FeRh Epilayer

156   0   0.0 ( 0 )
 نشر من قبل Jamie Massey
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spin-wave resonance measurements were performed in the mixed magnetic phase regime of a Pd-doped FeRh epilayer that appears as the first-order ferromagnetic-antiferromagnetic phase transition takes place. It is seen that the measured value of the exchange stiffness is suppressed throughout the measurement range when compared to the expected value of the fully ferromagnetic regime, extracted via the independent means of a measurement of the Curie point, for only slight changes in the ferromagnetic volume fraction. This behavior is attributed to the influence of the antiferromagnetic phase: inspired by previous experiments that show ferromagnetism to be most persistent at the surfaces and interfaces of FeRh thin films, we modelled the antiferromagnetic phase as forming a thin layer in the middle of the epilayer through which the two ferromagnetic layers are coupled up to a certain critical thickness. The development of this exchange stiffness is then consistent with that expected from the development of an exchange coupling across the magnetic phase boundary, as a consequence of a thickness dependent phase transition taking place in the antiferromagnetic regions and is supported by complimentary computer simulations of atomistic spin-dynamics. The development of the Gilbert damping parameter extracted from the ferromagnetic resonance investigations is consistent with this picture.

قيم البحث

اقرأ أيضاً

Using X-ray photoelectron emission microscopy we have observed the coexistence of ferromagnetic and antiferromagnetic phases in a (3 at.%)Pd-doped FeRh epilayer. By quantitatively analyzing the resultant images we observe that as the epilayer transfo rms there is a change in magnetic domain symmetry from predominantly twofold at lower temperatures through to an equally weighted combination of both four and twofold symmetries at higher temperature. It is postulated that the lowered symmetry Ising-like nematic phase resides at the near-surface of the epilayer. This behavior is different to that of undoped FeRh suggesting that the variation in symmetry is driven by the competing structural and electronic interactions in the nanoscale FeRh film coupled with the effect of the chemical doping disorder.
The B2-ordered alloy FeRh shows a metamagnetic phase transition, transforming from antiferromagnetic (AF) to ferromagnetic (FM) order at a temperature $T_mathrm{t} sim 380 $~K in bulk. As well as temperature, the phase transition can be triggered by many means such as strain, chemical doping, or magnetic or electric fields. Its first-order nature means that phase coexistence is possible. Here we show that a phase boundary in a 300~nm diameter nanopillar, controlled by a doping gradient during film growth, is moved by an electrical current in the direction of electron flow. We attribute this to spin injection from one magnetically ordered phase region into the other driving the phase transition in a region just next to the phase boundary. The associated change in resistance of the nanopillar shows memristive properties, suggesting potential applications as memory cells or artificial synapses in neuromorphic computing schemes.
Using a double-pump pulse approach and laser-induced THz emission as an ultrafast amperemeter and magnetometer, we show that a femtosecond laser pulse generates ferromagnetic nuclei in a FeRh/Pt bilayer, i.e. these nuclei acquire a net magnetization and a susceptibility to a magnetic field, but only 20 ps after the initial laser excitation. We argue that this latency is intrinsic to the first-order phase transitions from antiferromagnetic to ferromagnetic states and must be present even in the case when the sign of the exchange interaction changes instantaneously.
229 - K. Hamaya , T. Koike , T. Taniyama 2005
A new scenario of the mechanism of intriguing ferromagnetic properties in Mn-doped magnetic semiconductor (Ga,Mn)As is examined in detail. We find that magnetic features seen in zero-field cooled and field cooled magnetizations are not interpreted wi th a single domain model [Phys. Rev. Lett. 95, 217204 (2005)], and the magnetic relaxation, which is similar to that seen in magnetic particles and granular systems, is becoming significant at temperatures above the lower-temperature peak in the temperature dependence of ac susceptibility, supporting the cluster/matrix model reported in our previous work [Phys. Rev. Lett. 94, 147203 (2005)]. Cole-Cole analysis reveals that magnetic interactions between such (Ga,Mn)As clusters are significant at temperatures below the higher-temperature peak in the temperature dependent ac susceptibility. The magnetizations of these films disappear above the temperature showing the higher-temperature peak, which is generally referred to as the Curie temperature. However, we suggest that these combined results are evidence that the temperature is actually the blocking temperature of (Ga,Mn)As clusters with a relatively high hole concentration compared to the (Ga,Mn)As matrix.
We have investigated heteroepitaxial films of Sm-doped BiFeO3 with a Sm-concentration near a morphotropic phase boundary. Our high-resolution synchrotron X-ray diffraction, carried out in a temperature range of 25C to 700C, reveals substantial phase coexistence as one changes temperature to crossover from a low-temperature PbZrO3-like phase to a high-temperature orthorhombic phase. We also examine changes due to strain for films greater or less than the critical thickness for misfit dislocation formation. Particularly, we note that thicker films exhibit a substantial volume collapse associated with the structural transition that is suppressed in strained thin films.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا