ﻻ يوجد ملخص باللغة العربية
Given an $n$-vertex graph $G$ with minimum degree at least $d n$ for some fixed $d > 0$, the distribution $G cup mathbb{G}(n,p)$ over the supergraphs of $G$ is referred to as a (random) {sl perturbation} of $G$. We consider the distribution of edge-coloured graphs arising from assigning each edge of the random perturbation $G cup mathbb{G}(n,p)$ a colour, chosen independently and uniformly at random from a set of colours of size $r := r(n)$. We prove that such edge-coloured graph distributions a.a.s. admit rainbow Hamilton cycles whenever the edge-density of the random perturbation satisfies $p := p(n) geq C/n$, for some fixed $C > 0$, and $r = (1 + o(1))n$. The number of colours used is clearly asymptotically best possible. In particular, this improves upon a recent result of Anastos and Frieze (2019) in this regard. As an intermediate result, which may be of independent interest, we prove that randomly edge-coloured sparse pseudo-random graphs a.a.s. admit an almost spanning rainbow path.
For two graphs $G$ and $H$, write $G stackrel{mathrm{rbw}}{longrightarrow} H$ if $G$ has the property that every {sl proper} colouring of its edges yields a {sl rainbow} copy of $H$. We study the thresholds for such so-called {sl anti-Ramsey} prope
For two graphs $G$ and $H$, write $G stackrel{mathrm{rbw}}{longrightarrow} H$ if $G$ has the property that every emph{proper} colouring of its edges yields a emph{rainbow} copy of $H$. We study the thresholds for such so-called emph{anti-Ramsey} pr
Maker-Breaker games are played on a hypergraph $(X,mathcal{F})$, where $mathcal{F} subseteq 2^X$ denotes the family of winning sets. Both players alternately claim a predefined amount of edges (called bias) from the board $X$, and Maker wins the game
We determine, up to a multiplicative constant, the optimal number of random edges that need to be added to a $k$-graph $H$ with minimum vertex degree $Omega(n^{k-1})$ to ensure an $F$-factor with high probability, for any $F$ that belongs to a certai
Given a dense subset $A$ of the first $n$ positive integers, we provide a short proof showing that for $p=omega(n^{-2/3})$ the so-called {sl randomly perturbed} set $A cup [n]_p$ a.a.s. has the property that any $2$-colouring of it has a monochromati