ترغب بنشر مسار تعليمي؟ اضغط هنا

Avoided level crossing at the magnetic field induced topological phase transition due to spin-orbital mixing

82   0   0.0 ( 0 )
 نشر من قبل Badih Assaf
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In 3D topological insulators, an effective closure of the bulk energy gap with increasing magnetic field expected at a critical point can yield a band crossing at a gapless Dirac node. Using high-field magnetooptical Landau level spectroscopy on the topological crystalline insulator Pb1-xSnxSe, we demonstrate that such a gap closure does not occur, and an avoided crossing is observed as the magnetic field is swept through the critical field. We attribute this anticrossing to orbital parity and spin mixing of the N=0 levels. Concurrently, we observe no gap closure at the topological phase transition versus temperature suggesting that the anticrossing is a generic property of topological phase transitions.



قيم البحث

اقرأ أيضاً

136 - Zhimin Hu , Gang Xiong , Xiang Gao 2019
We present the observations of x-rays emitted from the $1s2s^{2}2p_{1/2}2p_{3/2}$ inner shell excited state of B-like W and Bi ions. The relative transition rates are obtained for two dominant radiative transitions to $1s^{2}2s^{2}2p_{1/2}$ and $1s^{ 2}2s^{2}2p_{3/2}$. The experimental results and the comparison with rigorous relativistic calculations show that the rates of the strong electric dipole allowed $1s^22s^22p$ -- $1s2s^22p^2$ transitions are strongly modified due to a drastic change in the wavefunction caused by the Breit interaction.
We have studied the Ho3+ spin dynamics for LiY0.998Ho0.002F4 through the positive muon (mu+) transverse field depolarization rate lambda_TF as a function of temperature and magnetic field. We find sharp reductions in lambda_TF(H) at fields of 23, 46 and 69 mT, for which the Ho3+ ion system has field-induced (avoided) level crossings. The reduction scales with calculated level repulsions, suggesting that mu+ depolarization by slow fluctuations of non-resonant Ho3+ spin states is partially suppressed when resonant tunneling opens new fluctuation channels at frequencies much greater than the muon precession frequency.
We investigate the photo-induced spin dynamics of single nitrogen-vacancy (NV) centres in diamond near the electronic ground state level anti-crossing (GSLAC), which occurs at an axial magnetic field around 1024 G. Using optically detected magnetic r esonance spectroscopy, we first find that the electron spin transition frequency can be tuned down to 100 kHz for the NV{14} centre, while for the NV{15} centre the transition strength vanishes for frequencies below about 2 MHz owing to the GSLAC level structure. Using optical pulses to prepare and readout the spin state, we observe coherent spin oscillations at 1024 G for the NV{14}, which originate from spin mixing induced by residual transverse magnetic fields. This effect is responsible for limiting the smallest observable transition frequency, which can span two orders of magnitude from 100 kHz to tens of MHz depending on the local magnetic noise. A similar feature is observed for the NV{15} centre at 1024 G. As an application of these findings, we demonstrate all-optical detection and spectroscopy of externally-generated fluctuating magnetic fields at frequencies from 8 MHz down to 500 kHz, using a NV{14} centre. Since the Larmor frequency of most nuclear spin species lies within this frequency range near the GSLAC, these results pave the way towards all-optical, nanoscale nuclear magnetic resonance spectroscopy, using longitudinal spin cross-relaxation.
116 - C. Castelnovo 2008
We study a quantum phase transition between a phase which is topologically ordered and one which is not. We focus on a spin model, an extension of the toric code, for which we obtain the exact ground state for all values of the coupling constant that takes the system across the phase transition. We compute the entanglement and the topological entropy of the system as a function of this coupling constant, and show that the topological entropy remains constant all the way up to the critical point, and jumps to zero beyond it. Despite the jump in the topological entropy, the transition is second order as detected via any local observable.
It is well-known that helical surface states of a three-dimensional topological insulator (TI) do not respond to a static in-plane magnetic field. Formally this occurs because the in-plane magnetic field appears as a vector potential in the Dirac Ham iltonian of the surface states and can thus be removed by a gauge transformation of the surface electron wavefunctions. Here we show that when the top and bottom surfaces of a thin film of TI are hybridized and the Fermi level is in the hybridization gap, a nonzero diamagnetic response appears. Moreover, a quantum phase transition occurs at a finite critical value of the parallel field from an insulator with a diamagnetic response to a semimetal with a vanishing response to the parallel field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا