ترغب بنشر مسار تعليمي؟ اضغط هنا

On the convergence of closed-loop Nash equilibria to the mean field game limit

63   0   0.0 ( 0 )
 نشر من قبل Daniel Lacker
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English
 تأليف Daniel Lacker




اسأل ChatGPT حول البحث

This paper continues the study of the mean field game (MFG) convergence problem: In what sense do the Nash equilibria of $n$-player stochastic differential games converge to the mean field game as $nrightarrowinfty$? Previous work on this problem took two forms. First, when the $n$-player equilibria are open-loop, compactness arguments permit a characterization of all limit points of $n$-player equilibria as weak MFG equilibria, which contain additional randomness compared to the standard (strong) equilibrium concept. On the other hand, when the $n$-player equilibria are closed-loop, the convergence to the MFG equilibrium is known only when the MFG equilibrium is unique and the associated master equation is solvable and sufficiently smooth. This paper adapts the compactness arguments to the closed-loop case, proving a convergence theorem that holds even when the MFG equilibrium is non-unique. Every limit point of $n$-player equilibria is shown to be the same kind of weak MFG equilibrium as in the open-loop case. Some partial results and examples are discussed for the converse question, regarding which of the weak MFG equilibria can arise as the limit of $n$-player (approximate) equilibria.

قيم البحث

اقرأ أيضاً

For a mean field game model with a major and infinite minor players, we characterize a notion of Nash equilibrium via a system of so-called master equations, namely a system of nonlinear transport equations in the space of measures. Then, for games w ith a finite number N of minor players and a major player, we prove that the solution of the corresponding Nash system converges to the solution of the system of master equations as N tends to infinity.
Mean field games (MFGs) describe the limit, as $n$ tends to infinity, of stochastic differential games with $n$ players interacting with one another through their common empirical distribution. Under suitable smoothness assumptions that guarantee uni queness of the MFG equilibrium, a form of law of large of numbers (LLN), also known as propagation of chaos, has been established to show that the MFG equilibrium arises as the limit of the sequence of empirical measures of the $n$-player game Nash equilibria, including the case when player dynamics are driven by both idiosyncratic and common sources of noise. The proof of convergence relies on the so-called master equation for the value function of the MFG, a partial differential equation on the space of probability measures. In this work, under additional assumptions, we establish a functional central limit theorem (CLT) that characterizes the limiting fluctuations around the LLN limit as the unique solution of a linear stochastic PDE. The key idea is to use the solution to the master equation to construct an associated McKean-Vlasov interacting $n$-particle system that is sufficiently close to the Nash equilibrium dynamics of the $n$-player game for large $n$. We then derive the CLT for the latter from the CLT for the former. Along the way, we obtain a new multidimensional CLT for McKean-Vlasov systems. We also illustrate the broader applicability of our methodology by applying it to establish a CLT for a specific linear-quadratic example that does not satisfy our main assumptions, and we explicitly solve the resulting stochastic PDE in this case.
In this paper we consider non zero-sum games where multiple players control the drift of a process, and their payoffs depend on its ergodic behaviour. We establish their connection with systems of Ergodic BSDEs, and prove the existence of a Nash equi librium under the generalised Isaacs conditions. We also study the case of interacting players of different type.
We study a sequence of symmetric $n$-player stochastic differential games driven by both idiosyncratic and common sources of noise, in which players interact with each other through their empirical distribution. The unique Nash equilibrium empirical measure of the $n$-player game is known to converge, as $n$ goes to infinity, to the unique equilibrium of an associated mean field game. Under suitable regularity conditions, in the absence of common noise, we complement this law of large numbers result with non-asymptotic concentration bounds for the Wasserstein distance between the $n$-player Nash equilibrium empirical measure and the mean field equilibrium. We also show that the sequence of Nash equilibrium empirical measures satisfies a weak large deviation principle, which can be strengthened to a full large deviation principle only in the absence of common noise. For both sets of results, we first use the master equation, an infinite-dimensional partial differential equation that characterizes the value function of the mean field game, to construct an associated McKean-Vlasov interacting $n$-particle system that is exponentially close to the Nash equilibrium dynamics of the $n$-player game for large $n$, by refining estimates obtained in our companion paper. Then we establish a weak large deviation principle for McKean-Vlasov systems in the presence of common noise. In the absence of common noise, we upgrade this to a full large deviation principle and obtain new concentration estimates for McKean-Vlasov systems. Finally, in two specific examples that do not satisfy the assumptions of our main theorems, we show how to adapt our methodology to establish large deviations and concentration results.
53 - Francois Delarue 2018
We here address the question of restoration of uniqueness in mean-field games deriving from deterministic differential games with a large number of players. The general strategy for restoring uniqueness is inspired from earlier similar results on ord inary and stochastic differential equations. It consists in randomizing the equilibria through an external noise. As a main feature, we choose the external noise as an infinite dimensional Ornstein-Uhlenbeck process. We first investigate existence and uniqueness of a solution to the noisy system made of the mean-field game forced by the Ornstein-Uhlenbeck process. We also show how such a noisy system can be interpreted as the limit version of a stochastic differential game with a large number of players.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا