ﻻ يوجد ملخص باللغة العربية
This paper continues the study of the mean field game (MFG) convergence problem: In what sense do the Nash equilibria of $n$-player stochastic differential games converge to the mean field game as $nrightarrowinfty$? Previous work on this problem took two forms. First, when the $n$-player equilibria are open-loop, compactness arguments permit a characterization of all limit points of $n$-player equilibria as weak MFG equilibria, which contain additional randomness compared to the standard (strong) equilibrium concept. On the other hand, when the $n$-player equilibria are closed-loop, the convergence to the MFG equilibrium is known only when the MFG equilibrium is unique and the associated master equation is solvable and sufficiently smooth. This paper adapts the compactness arguments to the closed-loop case, proving a convergence theorem that holds even when the MFG equilibrium is non-unique. Every limit point of $n$-player equilibria is shown to be the same kind of weak MFG equilibrium as in the open-loop case. Some partial results and examples are discussed for the converse question, regarding which of the weak MFG equilibria can arise as the limit of $n$-player (approximate) equilibria.
For a mean field game model with a major and infinite minor players, we characterize a notion of Nash equilibrium via a system of so-called master equations, namely a system of nonlinear transport equations in the space of measures. Then, for games w
Mean field games (MFGs) describe the limit, as $n$ tends to infinity, of stochastic differential games with $n$ players interacting with one another through their common empirical distribution. Under suitable smoothness assumptions that guarantee uni
In this paper we consider non zero-sum games where multiple players control the drift of a process, and their payoffs depend on its ergodic behaviour. We establish their connection with systems of Ergodic BSDEs, and prove the existence of a Nash equi
We study a sequence of symmetric $n$-player stochastic differential games driven by both idiosyncratic and common sources of noise, in which players interact with each other through their empirical distribution. The unique Nash equilibrium empirical
We here address the question of restoration of uniqueness in mean-field games deriving from deterministic differential games with a large number of players. The general strategy for restoring uniqueness is inspired from earlier similar results on ord