ﻻ يوجد ملخص باللغة العربية
We extend the definition of the conditional min-entropy from bipartite quantum states to bipartite quantum channels. We show that many of the properties of the conditional min-entropy carry over to the extended version, including an operational interpretation as a guessing probability when one of the subsystems is classical. We then show that the extended conditional min-entropy can be used to fully characterize when two bipartite quantum channels are related to each other via a superchannel (also known as supermap or a comb) that is acting on one of the subsystems. This relation is a pre-order that extends the definition of quantum majorization from bipartite states to bipartite channels, and can also be characterized with semidefinite programming. As a special case, our characterization provides necessary and sufficient conditions for when a set of quantum channels is related to another set of channels via a single superchannel. We discuss the applications of our results to channel discrimination, and to resource theories of quantum processes. Along the way we study channel divergences, entropy functions of quantum channels, and noise models of superchannels, including random unitary superchannels, and doubly-stochastic superchannels. For the latter we give a physical meaning as being completely-uniformity preserving.
Optical channels, such as fibers or free-space links, are ubiquitous in todays telecommunication networks. They rely on the electromagnetic field associated with photons to carry information from one point to another in space. As a result, a complete
We provide lower and upper bounds on the information transmission capacity of one single use of a classical-quantum channel. The lower bound is expressed in terms of the Hoeffding capacity, that we define similarly to the Holevo capacity, but replaci
We consider sequences of random quantum channels defined using the Stinespring formula with Haar-distributed random orthogonal matrices. For any fixed sequence of input states, we study the asymptotic eigenvalue distribution of the outputs through te
Quantum operations, or quantum channels cannot be inverted in general. An arbitrary state passing through a quantum channel looses its fidelity with the input. Given a quantum channel ${cal E}$, we introduce the concept of its quasi-inverse as a map
Quantum Private Comparison (QPC) allows us to protect private information during its comparison. In the past various three-party quantum protocols have been proposed that claim to work well under noisy conditions. Here we tackle the problem of QPC un