ترغب بنشر مسار تعليمي؟ اضغط هنا

Detector Backgrounds at the Higgs Factory Muon Collider: MARS vs FLUKA

54   0   0.0 ( 0 )
 نشر من قبل Sergei Striganov
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Simulations for the 125-GeV Higgs Factory (HF) Muon Collider (MC) have shown large background particle loads on the collider detector. To verify level, source and composition of background calculations were performed using FLUKA and MARS codes for two shielding configurations. After comprehensive tuning of muon beam parameters, geometry setups and scoring procedures, background particle distributions at the detector entrance were simulated and compared. The spatial distributions and energy spectra of background particles obtained by two codes are rather similar. Average numbers of background particles simulated using MARS and FLUKA agree within a factor of two.

قيم البحث

اقرأ أيضاً

Because muons connect directly to a standard-model Higgs particle in s-channel production, a muon collider would be an ideal device for precision measurement of the mass and width of a Higgs-like particle, and for further exploration of its productio n and decay properties. Parameters of a high-precision muon collider are presented and the necessary components and performance are described. An important advantage of the muon collider approach is that the spin precession of the muons will enable energy measurements at extremely high accuracy (dE/E to 10-6 or better). The collider could be a first step toward a high-luminosity multi-TeV lepton collider, and extensions toward a higher-energy higher-luminosity device are also discussed.
We propose the construction of a compact Muon Collider Higgs Factory. Such a machine can produce up to sim 14,000 at 8times 10^{31} cm^-2 sec^-1 clean Higgs events per year, enabling the most precise possible measurement of the mass, width and Higgs-Yukawa coupling constants.
107 - T.C. Huang , R. Ma , B. Huang 2016
Muon Telescope Detector (MTD) is a newly installed detector in the STAR experiment. It provides an excellent opportunity to study heavy quarkonium physics using the dimuon channel in heavy ion collisions. In this paper, we report the muon identificat ion performance for the MTD using proton-proton collision at $sqrt{s}$ = 500 GeV with various methods. The result using the Likelihood Ratio method shows that the muon identification efficiency can reach to $sim$90% for muons with transverse momentum greater than 3 GeV/c and the significance of J/$psi$ signal is improved by $sim$40% compared to using the basic selection.
An upgraded asymmetric e+e- flavor factory, SuperKEKB, is planned at KEK. It will deliver a luminosity of 8 x 10^35 cm^-2 s^-1, allowing precision measurements in the flavor sector which can probe new physics well beyond the scales accessible to dire ct observation. The increased luminosity also requires upgrades of the Belle detector. Of critical importance here is a new silicon pixel vertex tracker, which will significantly improve the decay vertex resolution. This new detector will consist of two detector layers close to the interaction point, using DEPFET pixel sensors with 50 um thick silicon in the active area.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا