ﻻ يوجد ملخص باللغة العربية
Eta Car is one of the most intriguing luminous blue variables in the Galaxy. Observations and models at different wavelengths suggest a central binary with a 5.54 yr period residing in its core. 2D and 3D radiative transfer and hydrodynamic simulations predict a primary with a dense and slow stellar wind that interacts with the faster and lower density wind of the secondary. The wind-wind collision scenario suggests that the secondarys wind penetrates the primarys wind creating a low-density cavity in it, with dense walls where the two winds interact. We aim to trace the inner ~5-50 au structure of Eta Cars wind-wind interaction, as seen through BrG and, for the first time, through the He I 2s-2p line. We have used spectro-interferometric observations with GRAVITY at the VLTI. Our modeling of the continuum allows us to estimate its FWHM angular size close to 2 mas and an elongation ratio of 1.06 +/- 0.05 over a PA = 130 +/- 20 deg. Our CMFGEN modeling helped us to confirm that the role of the secondary should be taken into account to properly reproduce the observed BrG and He I lines. Chromatic images across BrG reveal a southeast arc-like feature, possibly associated to the hot post-shocked winds flowing along the cavity wall. The images of He I 2s-2p served to constrain the 20 mas structure of the line-emitting region. The observed morphology of He I suggests that the secondary is responsible for the ionized material that produces the line profile. Both the BrG and the He I 2s-2p maps are consistent with previous hydrodynamical models of the colliding wind scenario. Future dedicated simulations together with an extensive interferometric campaign are necessary to refine our constraints on the wind and stellar parameters of the binary, which finally will help us predict the evolutionary path of Eta Car.
Aims. The structural inhomogeneities and kinematics of massive star nebulae are tracers of their mass-loss history. We conduct a three-dimensional morpho-kinematic analysis of the ejecta of eta Car outside its famous Homunculus nebula. Methods. We ca
We present far-infrared and sub-millimeter images of the eta Crv debris disk system obtained with Herschel and SCUBA-2, as well as Hubble Space Telescope visible and near-infrared coronagraphic images. In the 70 micron Herschel image, we clearly sepa
A major uncertainty in the theory of stellar evolution is the angular momentum distribution inside stars and its change during stellar life. We compose a sample of 67 stars in the core-hydrogen burning phase with a $log,g$ value from high-resolution
$eta$~Car is one of the most massive stars in the Galaxy. It underwent a massive eruption in the 19th century, which produced the impressive bipolar Homunculus nebula now surrounding it. The central star is an eccentric binary with a period of 5.54,y
When the core hydrogen is exhausted during stellar evolution, the central region of a star contracts and the outer envelope expands and cools, giving rise to a red giant, in which convection occupies a large fraction of the star. Conservation of angu