ﻻ يوجد ملخص باللغة العربية
A major uncertainty in the theory of stellar evolution is the angular momentum distribution inside stars and its change during stellar life. We compose a sample of 67 stars in the core-hydrogen burning phase with a $log,g$ value from high-resolution spectroscopy, as well as an asteroseismic estimate of the near-core rotation rate derived from gravity-mode oscillations detected in space photometry. This assembly includes 8 B-type stars and 59 AF-type stars, covering a mass range from 1.4 to 5,M$_odot$, i.e., it concerns intermediate-mass stars born with a well-developed convective core. The sample covers projected surface rotation velocities $vsin,i in[9,242],$km,s$^{-1}$ and core rotation rates up to $26mu$Hz, which corresponds to 50% of the critical rotation frequency. We find deviations from rigid rotation to be moderate in the single stars of this sample. We place the near-core rotation rates in an evolutionary context and find that the core rotation must drop drastically before or during the short phase between the end of the core-hydrogen burning and the onset of core-helium burning. We compute the spin parameter, which is the ratio of twice the rotation rate to the mode frequency (also known as the inverse Rossby number), for 1682 gravity modes and find the majority (95%) to occur in the sub-inertial regime. The ten stars with Rossby modes have spin parameters between 14 and 30, while the gravito-inertial modes cover the range from 1 to 15.
We propose a methodological framework to perform forward asteroseismic modeling of stars with a convective core, based on gravity-mode oscillations. These probe the near-core region in the deep stellar interior. The modeling relies on a set of observ
We present numerical simulations of internal gravity waves (IGW) in a star with a convective core and extended radiative envelope. We report on amplitudes, spectra, dissipation and consequent angular momentum transport by such waves. We find that the
CONTEXT. Gamma Doradus stars (hereafter gamma Dor stars) are known to exhibit gravity- and/or gravito-intertial modes that probe the inner stellar region near the convective core boundary. The non-equidistant spacing of the pulsation periods is an ob
Red giants are evolved stars that have exhausted the supply of hydrogen in their cores and instead burn hydrogen in a surrounding shell. Once a red giant is sufficiently evolved, the helium in the core also undergoes fusion. Outstanding issues in our
Analyses of large spectroscopic surveys of early-type stars in the LMC have found an excess of nitrogen enriched B-type targets with a vsini<40 km/s compared with the predictions of single star evolutionary models incorporating rotational mixing. By