ترغب بنشر مسار تعليمي؟ اضغط هنا

Gaia, Trumpler 16, and Eta Carinae

160   0   0.0 ( 0 )
 نشر من قبل Roberta Humphreys
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Gaia parallaxes for the star cluster Tr 16 reveal a discrepancy in the oft-quoted distance of Eta Carinae. It is probably more distant and more luminous. Moreover, many presumed members may not belong to Tr 16.



قيم البحث

اقرأ أيضاً

We present the first extensive spectroscopic study of the global population in star clusters Trumpler~16, Trumpler~14 and Collinder~232 in the Carina Nebula, using data from the Gaia-ESO Survey, down to solar-mass stars. In addition to the standard h omogeneous Survey data reduction, a special processing was applied here because of the bright nebulosity surrounding Carina stars. We find about four hundred good candidate members ranging from OB types down to slightly sub-solar masses. About one-hundred heavily-reddened early-type Carina members found here were previously unrecognized or poorly classified, including two candidate O stars and several candidate Herbig Ae/Be stars. Their large brightness makes them useful tracers of the obscured Carina population. The spectroscopically-derived temperatures for nearly 300 low-mass members allows the inference of individual extinction values, and the study of the relative placement of stars along the line of sight. We find a complex spatial structure, with definite clustering of low-mass members around the most massive stars, and spatially-variable extinction. By combining the new data with existing X-ray data we obtain a more complete picture of the three-dimensional spatial structure of the Carina clusters, and of their connection to bright and dark nebulosity, and UV sources. The identification of tens of background giants enables us also to determine the total optical depth of the Carina nebula along many sightlines. We are also able to put constraints on the star-formation history of the region, with Trumpler~14 stars found to be systematically younger than stars in other sub-clusters. We find a large percentage of fast-rotating stars among Carina solar-mass members, which provide new constraints on the rotational evolution of pre-main-sequence stars in this mass range.
We present preliminary results of our analysis on the long-term variations observed in the optical spectrum of the LBV star Eta Carinae. Based on the hydrogen line profiles, we conclude that the physical parameters of the primary star did not change in the last 15 years.
Trumpler 16 is a well--known rich star cluster containing the eruptive supergiant $eta$ Carinae and located in the Carina star-forming complex. In the context of the Chandra Carina Complex Project, we study Trumpler 16 using new and archival X-ray da ta. A revised X-ray source list of the Trumpler 16 region contains 1232 X-ray sources including 1187 likely Carina members. These are matched to 1047 near-infrared counterparts detected by the HAWK-I instrument at the VLT allowing for better selection of cluster members. The cluster is irregular in shape. Although it is roughly circular, there is a high degree of sub-clustering, no noticeable central concentration and an extension to the southeast. The high--mass stars show neither evidence of mass segregation nor evidence of strong differential extinction. The derived power-law slope of the X-ray luminosity function for Trumpler 16 reveals a much steeper function than the Orion Nebula Cluster implying different ratio of solar- to higher-mass stars. We estimate the total Trumpler 16 pre-main sequence population to be > 6500 Class II and Class III X-ray sources. An overall K-excess disk frequency of ~ 8.9% is derived using the X-ray selected sample, although there is some variation among the sub-clusters, especially in the Southeastern extension. X-ray emission is detected from 29 high--mass stars with spectral types between B2 and O3.
During the years 1838-1858, the very massive star {eta} Carinae became the prototype supernova impostor: it released nearly as much light as a supernova explosion and shed an impressive amount of mass, but survived as a star.1 Based on a light-echo s pectrum of that event, Rest et al.2 conclude that a new physical mechanism is required to explain it, because the gas outflow appears cooler than theoretical expectations. Here we note that (1) theory predicted a substantially lower temperature than they quoted, and (2) their inferred observational value is quite uncertain. Therefore, analyses so far do not reveal any significant contradiction between the observed spectrum and most previous discussions of the Great Eruption and its physics.
102 - Michael Shull , Jeremy Darling , 2021
Using offset-corrected Gaia-EDR3 parallax measurements and spectrophotometric methods, we have determined distances for 69 massive stars in the Carina OB1 association and associated clusters: Trumpler 16 (21 stars), Trumpler 14 (20 stars), Trumpler 1 5 (3 stars), Bochum 11 (5 stars), and South Pillars region (20 stars). Past distance estimates to the Carina Nebula range from 2.2 to 3.6 kpc, with uncertainties arising from photometry and anomalous dust extinction. The EDR3 parallax solutions show considerable improvement over DR2, with typical errors $sigma_{varpi}/varpi approx$~3-5%. The O-type stars in the Great Carina Nebula lie at essentially the same distance ($2.35pm0.08$ kpc), quoting mean and rms variance. The clusters have distances of $2.32pm0.12$ kpc (Tr 16), $2.37pm0.15$ kpc (Tr 14), $2.36pm0.09$ kpc (Tr 15), and $2.33pm0.12$ kpc (Bochum 11) in good agreement with the $eta$ Car distance of around 2.3 kpc. O-star proper motions suggest internal (2D) velocity dispersions $sim4$ km/s for Tr 14 and Tr 16. Reliable distances allow estimates of cluster sizes, stellar dynamics, luminosities, and fluxes of photoionizing radiation incident on photodissociation regions in the region. We estimate that Tr 14 and Tr 16 have half-mass radii $r_h = 1.5-1.8$ pc, stellar crossing times $t_{rm cr} = r_h/v_m approx 0.7-0.8$ Myr, and two-body relaxation times $t_{rh} approx 40-80$ Myr. The underlying velocity dispersion for Tr 14, if a bound cluster, would be $v_m approx 2.1^{+0.7}_{-0.4}$ km/s for $N = 7600^{+5800}_{-2600}$ stars. With the higher dispersions of the O-stars, mass segregation might occur slowly, on times scales of 3-6~Myr.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا