ﻻ يوجد ملخص باللغة العربية
In this paper we present a novel approach to automatically infer parameters of spiking neural networks. Neurons are modelled as timed automata waiting for inputs on a number of different channels (synapses), for a given amount of time (the accumulation period). When this period is over, the current potential value is computed considering current and past inputs. If this potential overcomes a given threshold, the automaton emits a broadcast signal over its output channel , otherwise it restarts another accumulation period. After each emission, the automaton remains inactive for a fixed refractory period. Spiking neural networks are formalised as sets of automata, one for each neuron, running in parallel and sharing channels according to the network structure. Such a model is formally validated against some crucial properties defined via proper temporal logic formulae. The model is then exploited to find an assignment for the synaptical weights of neural networks such that they can reproduce a given behaviour. The core of this approach consists in identifying some correcting actions adjusting synaptical weights and back-propagating them until the expected behaviour is displayed. A concrete case study is discussed.
Active learning of timed languages is concerned with the inference of timed automata from observed timed words. The agent can query for the membership of words in the target language, or propose a candidate model and verify its equivalence to the tar
We present TarTar, an automatic repair analysis tool that, given a timed diagnostic trace (TDT) obtained during the model checking of a timed automaton model, suggests possible syntactic repairs of the analyzed model. The suggested repairs include mo
Mean-payoff games on timed automata are played on the infinite weighted graph of configurations of priced timed automata between two players, Player Min and Player Max, by moving a token along the states of the graph to form an infinite run. The goal
As the limits of traditional von Neumann computing come into view, the brains ability to communicate vast quantities of information using low-power spikes has become an increasing source of inspiration for alternative architectures. Key to the succes
In this paper, we present connections between three models used in different research fields: weighted finite automata~(WFA) from formal languages and linguistics, recurrent neural networks used in machine learning, and tensor networks which encompas