ﻻ يوجد ملخص باللغة العربية
We construct new families of 1/4 BPS Wilson loops in circular quiver $mathcal N=4$ superconformal Chern-Simons-matter (SCSM) theories in three dimensions. They are defined as the holonomy of superconnections that contain non-trivial couplings to scalar and fermions, and cannot be reduced to block-diagonal matrices. Consequently, the new operators cannot be written in terms of double-node Wilson loops, as the ones considered so far in the literature. For particular values of the couplings the superconnection becomes block-diagonal and we recover the known fermionic 1/4 and 1/2 BPS Wilson loops. The new operators are cohomologically equivalent to bosonic 1/4 BPS Wilson loops and are then amenable of exact evaluation via localization techniques. Moreover, in the case of orbifold ABJM theory we identify the corresponding gravity duals for some of the 1/4 and 1/2 BPS Wilson loops.
In $mathcal N geq 2$ superconformal Chern-Simons-matter theories we construct the infinite family of Bogomolnyi-Prasad-Sommerfield (BPS) Wilson loops featured by constant parametric couplings to scalar and fermion matter, including both line Wilson l
We study the algebra of BPS Wilson loops in 3d gauge theories with N=2 supersymmetry and Chern-Simons terms. We argue that new relations appear on the quantum level, and that in many cases this makes the algebra finite-dimensional. We use our results
This is a compact review of recent results on supersymmetric Wilson loops in ABJ(M) and related theories. It aims to be a quick introduction to the state of the art in the field and a discussion of open problems. It is divided into short chapters dev
Three dimensional supersymmetric field theories have large moduli spaces of circular Wilson loops preserving a fixed set of supercharges. We simplify previous constructions of such Wilson loops and amend and clarify their classification. For a generi
We present new circular Wilson loops in three-dimensional N=4 quiver Chern-Simons-matter theory on S^3. At any given node of the quiver, a two-parameter family of operators can be obtained by opportunely deforming the 1/4 BPS Gaiotto-Yin loop. Includ