ﻻ يوجد ملخص باللغة العربية
We report a significant Dzyaloshinskii-Moriya interaction (DMI) and perpendicular magnetic anisotropy (PMA) at interfaces comprising hexagonal boron nitride (h-BN) and Co. By comparing the behavior of these phenomena at graphene/Co and h-BN/Co interfaces, it is found that the DMI in latter increases as a function of Co thickness and beyond three monolayers stabilizes with one order of magnitude larger values compared to those at graphene/Co, where the DMI shows opposite decreasing behavior. At the same time, the PMA for both systems shows similar trends with larger values for graphene/Co and no significant variations for all thickness ranges of Co. Furthermore, using micromagnetic simulations we demonstrate that such significant DMI and PMA values remaining stable over large range of Co thickness give rise to formation of skyrmions with small applied external fields in the range of 200-250 mT up to 100 K temperatures. These findings open up further possibilities towards integrating two-dimensional (2D) materials in spin-orbitronics devices.
We report on the study of both perpendicular magnetic anisotropy (PMA) and Dzyaloshinskii-Moriya interaction (DMI) at an oxide/ferromagnetic metal (FM) interface, i.e. BaTiO3 (BTO)/CoFeB. Thanks to the functional properties of the BTO film and the ca
The possibility of utilizing the rich spin-dependent properties of graphene has attracted great attention in pursuit of spintronics advances. The promise of high-speed and low-energy consumption devices motivates a search for layered structures that
We study theoretically, via Monte Carlo simulations on lattices containing up to 1000 x 1000 spins, thermal creation of skyrmion lattices in a 2D ferromagnetic film with perpendicular magnetic anisotropy and Dzyaloshinskii-Moriya interaction. At zero
The perpendicular magnetic anisotropy (PMA) at magnetic transition metal/oxide interfaces is a key element in building out-of-plane magnetized magnetic tunnel junctions for spin-transfer-torque magnetic random access memory (STT-MRAM). Size downscali
Magnetic tunnel junctions with perpendicular anisotropy form the basis of the spin-transfer torque magnetic random-access memory (STT-MRAM), which is non-volatile, fast, dense, and has quasi-infinite write endurance and low power consumption. Based o