ﻻ يوجد ملخص باللغة العربية
We present the electrical resistivity data under application of pressures up to $sim$ 26 GPa and down to 50 mK temperatures on YbFe$_2$Zn$_{20}$. We find a pressure induced magnetic phase transition with an onset at $p_c$=18.2$pm$0.8 GPa. At ambient pressure, YbFe$_2$Zn$_{20}$ manifests a heavy fermion, nonmagnetic ground state and the Fermi liquid behavior at low temperatures. As pressure is increased, the power law exponent in resistivity, $n$, deviates significantly from Fermi liquid behavior and tends to saturate with $n$ = 1 near $p_c$. A pronounced resistivity maximum, $T_text{max}$, which scales with Kondo temperature is observed. $T_text{max}$ decreases with increasing pressure and flattened out near $p_c$ indicating the suppression of Kondo exchange interaction. For $p>p_c$, $T_text{max}$ shows a sudden upward shift, most likely becoming associated with crystal electric field scattering. Application of magnetic field for $p>p_c$ broadens the transition and shifts it toward the higher temperature, which is a typical behavior of the ferromagnetic transition. The magnetic transition appears to abruptly develop above $p_c$, suggesting probable first-order (with changing pressure) nature of the transition; once stabilized, the ordering temperature does not depend on pressure up to $sim$ 26 GPa. Taken as a whole, these data suggest that YbFe$_2$Zn$_{20}$ has a quantum phase transition at $p_c$ = 18.2 GPa associated with the avoided quantum criticality in metallic ferromagnets.
Tuning of the electronic properties of heavy fermion compounds by chemical substitutions provides excellent opportunities to further understand the physics of hybridized ions in crystal lattices. Here we present an investigation on the effects of Cd
We report thermal expansion and magnetostriction of the cubic non-Kramers system PrIr$_2$Zn$_{20}$ with a non-magnetic $varGamma_{3}$ ground state doublet. In previous experiments, antiferroquadrupolar order at hbox{$T_{mathrm{Q}}=0.11$,K} and a Ferm
We propose a static auxiliary field approximation to study the hybridization physics of Kondo systems without the sign problem and use the mutual information to measure the intersite hybridization correlations. Our method takes full account of the sp
Magnetic susceptibility results for single crystals of the new cubic compounds UT$_2$Al$_{20}$ (T=Mn, V, and Mo) are reported. Magnetization, specific heat, resistivity, and neutron diffraction results for a single crystal and neutron diffraction and
SmB6 is a promising candidate material that promises to elucidate the connection between strong correlations and topological electronic states, which is a major challenge in condensed matter physics. The electron correlations are responsible for the