ترغب بنشر مسار تعليمي؟ اضغط هنا

Tuning the electronic hybridization in the heavy fermion cage compound YbFe$_{2}$Zn$_{20}$ with Cd-doping

304   0   0.0 ( 0 )
 نشر من قبل Marcos A. Avila
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Tuning of the electronic properties of heavy fermion compounds by chemical substitutions provides excellent opportunities to further understand the physics of hybridized ions in crystal lattices. Here we present an investigation on the effects of Cd doping in flux-grown single crystals of the complex intermetallic cage compound YbFe$_{2}$Zn$_{20}$, that has been described as a heavy fermion with Sommerfeld coefficient of 535 mJ/mol.K$^{2}$. Substitution of Cd for Zn disturbs the system by expanding the unit cell and, in this case, the size of the Zn cages that surround Yb and Fe. With increasing amount of Cd, the hybridization between Yb $4f$ electrons and the conduction electrons is weakened, as evidenced by a decrease in the Sommerfeld coefficient, which should be accompanied by a valence shift of the Yb$^{3+}$ due to the negative chemical pressure effect. This scenario is also supported by the low temperature dc-magnetic susceptibility, that is gradually suppressed and evidences an increment of the Kondo temperature, based on a shift to higher temperatures of the characteristic broad susceptibility peak. Furthermore, the DC resistivity decreases with the isoelectronic Cd substitution for Zn, contrary to the expectation for an increasingly disordered system, and implying that the valence shift is not related to charge carrier doping. The combined results demonstrate excellent complementarity between positive physical pressure and negative chemical pressure, and point to a rich playground for exploring the physics and chemistry of strongly correlated electron systems in the general family of Zn$_{20}$ compounds, despite their structural complexity.

قيم البحث

اقرأ أيضاً

Inelastic neutron scattering experiments on poly crystalline sample of heavy-fermion compound YbCo$_2$Zn$_{20}$ were carried out in order to obtain microscopic insights on the ground state and its magnetic field response. At zero field at 300 mK, ine lastic response consists of two features: quasielastic scattering and a sharp peak at 0.6 meV. With increasing temperature, a broad peak comes up around 2.1 meV, whereas quasielastic response gets broader and the peak at 0.6 meV becomes unclear. By applying magnetic field, the quasielastic response exhibits significant broadening above 1 T, and the peak at 0.6 meV is obscure under fields. The peaks in inelastic spectra and its temperature variation can be ascribed to the suggested crystal-field model of ${{Gamma}_6}$ - ${{Gamma}_8}$ - ${{Gamma}_7}$ with the overall splitting of less than 3 meV. The observed quasielastic response and its rapid broadening with magnetic field indicates that the heavy-electron state arises from the ground state doublets, and are strongly suppressed by external field in YbCo$_2$Zn$_{20}$.
A Kondo lattice of strongly interacting f-electrons immersed in a sea of conduction electrons remains one of the unsolved problems in condensed matter physics. The problem concerns localized f-electrons at high temperatures which evolve into hybridiz ed heavy quasi-particles at low temperatures, resulting in the appearance of a hybridization gap. Here, we unveil the presence of hybridization gap in Ce2RhIn8 and find the surprising result that the temperature range at which this gap becomes visible by angle-resolved photoemission spectroscopy is nearly an order of magnitude lower than the temperature range where the magnetic scattering becomes larger than the phonon scattering, as observed in the electrical resistivity measurements. Furthermore the spectral gap appears at temperature scales nearly an order of magnitude higher than the coherent temperature. We further show that when replacing In by Cd to tune the local density of states at the Ce3+ site, there is a strong reduction of the hybridization strength, which in turn leads to the suppression of the hybridization gap at low temperatures.
A detailed microscopic and quantitative description of the electronic and magnetic properties of Gd$^{3+}$-doped YCo$_{2}$Zn$_{20}$ single crystals (Y$_{1-x}$Gd$_{x}$Co$_{2}$Zn$_{20}$: (0.002 $lesssim x leq $ 1.00) is reported through a combination o f temperature-dependent electron spin resonance (ESR), heat capacity and $dc$ magnetic susceptibility experiments, plus first-principles density functional theory (DFT) calculations. The ESR results indicate that this system features an emph{exchange bottleneck} scenario wherein various channels for the spin-lattice relaxation mechanism of the Gd$^{3+}$ ions can be identified via exchange interactions with different types of conduction electrons at the Fermi level. Quantitative support from the other techniques allow to extract the exchange interaction parameters between the localized magnetic moments of the Gd$^{3+}$ ions and the different types of conduction electrons present at the Fermi level ($J_{fs}$, $J_{fp}$ and $J_{fd}$). Despite the complexity of the crystal structure, our combination of experimental and electronic structure data establish GdCo$_{2}$Zn$_{20}$ as a model RKKY system by predicting a Curie-Weiss temperature $theta_{C} = -1.2(2)$~K directly from microscopic parameters, in very good agreement with the bulk value from magnetization data. The successful microscopic understanding of the electronic structure and behavior for the two end compounds YCo$_{2}$Zn$_{20}$ and GdCo$_{2}$Zn$_{20}$ means they can be used as references to help describe the more complex electronic properties of related materials.
64 - A. Fahl , R. Grossi , D. Rigitano 2021
The partial (up to 7 %) substitution of Cd for Zn in the Yb-based heavy-fermion material YbFe$_2$Zn$_{20}$ is known to induce a slight ($sim 20$ %) reduction of the Sommerfeld specific heat coefficient $gamma$ and a huge (up to two orders of magnitud e) reduction of the $T^2$ resistivity coefficient $A$, corresponding to a drastic and unexpected reduction of the Kadowaki-Woods ratio $A/gamma ^2$. Here, Yb $L_{3}$-edge X-ray absorption spectroscopy shows that the Yb valence state is close to $3+$ for all $x$, whereas X-ray diffraction reveals that Cd replace the Zn ions only at the $16c$ site of the $Fdbar{3}m$ cubic structure, leaving the $48f$ and $96g$ sites with full Zn occupation. Ab-initio electronic structure calculations in pure and Cd-doped materials, carried out without considering correlations, show multiple conduction bands with only minor modifications of the band dispersions near the Fermi level and therefore do not explain the resistivity drop introduced by Cd substitution. We propose that the site-selective Cd substitution introduces light conduction bands with substantial contribution of Cd($16c$) $5p$ levels that have weak coupling to the Yb$^{3+}$ $4f$ moments. These light fermions coexist with heavy fermions originated from other conduction bands with larger participation of Zn($48f$ and $96g$) $4p$ levels that remain strongly coupled with the Yb$^{3+}$ local moments.
Low temperature magnetic properties of Cd-doped Ce2MIn8 (M = Rh and Ir) single crystals are investigated. Experiments of temperature dependent magnetic susceptibility, heat capacity and electrical resistivity measurements revealed that Cd-doping enha nces the antiferromagnetic (AFM) ordering temperature from TN = 2.8 K (x = 0) to TN = 4.8 K (x = 0.21) for Ce2RhIn8-xCdx and induces long range AFM ordering with TN = 3.8 K (x = 0.21) for Ce2IrIn8-xCdx. Additionally, X-ray and neutron magnetic scattering studies showed that Cd-doped samples present below TN a commensurate antiferromagnetic structure with a propagation vector (1/2,1/2,0). The resolved magnetic structures for both compounds indicate that the Cd-doping tends to rotate the direction of the ordered magnetic moments toward the ab-plane. This result suggests that the Cd-doping affects the Ce3+ ground state single ion anisotropy modifying the crystalline electrical field (CEF) parameters at the Ce3+ site. Indications of CEF evolution induced by Cd-doping were also found in the electrical resistivity measurements. Comparisons between our results and the general effects of Cd-doping on the related compounds CeMIn5 (M = Co, Rh and Ir) confirms the claims that the Cd-doping induced electronic tuning is the main effect favoring AFM ordering in these compounds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا