ﻻ يوجد ملخص باللغة العربية
Spiking Neural Networks (SNNs) offer an event-driven and more biologically realistic alternative to standard Artificial Neural Networks based on analog information processing. This can potentially enable energy-efficient hardware implementations of neuromorphic systems which emulate the functional units of the brain, namely, neurons and synapses. Recent demonstrations of ultra-fast photonic computing devices based on phase-change materials (PCMs) show promise of addressing limitations of electrically driven neuromorphic systems. However, scaling these standalone computing devices to a parallel in-memory computing primitive is a challenge. In this work, we utilize the optical properties of the PCM, Getextsubscript{2}Sbtextsubscript{2}Tetextsubscript{5} (GST), to propose a Photonic Spiking Neural Network computing primitive, comprising of a non-volatile synaptic array integrated seamlessly with previously explored `integrate-and-fire neurons. The proposed design realizes an `in-memory computing platform that leverages the inherent parallelism of wavelength-division-multiplexing (WDM). We show that the proposed computing platform can be used to emulate a SNN inferencing engine for image classification tasks. The proposed design not only bridges the gap between isolated computing devices and parallel large-scale implementation, but also paves the way for ultra-fast computing and localized on-chip learning.
Despite huge success of artificial intelligence, hardware systems running these algorithms consume orders of magnitude higher energy compared to the human brain, mainly due to heavy data movements between the memory unit and the computation cores. Sp
In-memory computing is a promising non-von Neumann approach for making energy-efficient deep learning inference hardware. Crossbar arrays of resistive memory devices can be used to encode the network weights and perform efficient analog matrix-vector
Collocated data processing and storage are the norm in biological systems. Indeed, the von Neumann computing architecture, that physically and temporally separates processing and memory, was born more of pragmatism based on available technology. As o
Spiking recurrent neural networks (RNNs) are a promising tool for solving a wide variety of complex cognitive and motor tasks, due to their rich temporal dynamics and sparse processing. However training spiking RNNs on dedicated neuromorphic hardware
Neuromorphic hardware platforms implement biological neurons and synapses to execute spiking neural networks (SNNs) in an energy-efficient manner. We present SpiNeMap, a design methodology to map SNNs to crossbar-based neuromorphic hardware, minimizi