ﻻ يوجد ملخص باللغة العربية
In this study, we perform a comparative theoretical study on the thermoelectric performance of materials with Cu$Ch_4$ ($Ch=$ S, Se) tetrahedra, including famous thermoelectric materials BiCuSeO and tetrahedrite Cu$_{12}$Sb$_4$S$_{13}$, by means of first-principles calculations. By comparing these electronic band structures, we find that many of these materials possess a Cu-$t_{2g}$ band structure consisting of quasi-one-dimensional band dispersions and the isotropic (two-dimensional for layered compounds) band dispersion near the valence-band edge. Therefore, the key factors for the thermoelectric performance are the anisotropy of the former band dispersion and the degeneracy of these two kinds of band dispersions. We also find that a large extension of the chalcogen orbitals often improves their thermoelectric performance by improving these two factors or by going beyond such a basic band structure through a large alternation of its shape. Such a large extension of the chalcogen orbitals might partially originate from the anisotropic Cu-$Ch$ bond geometry of a tetrahedron. Our study reveals interesting similarities and differences of materials with Cu$Ch_4$, which provides important knowledge for a future search of high-performance thermoelectric materials.
We report calculations of the electronic structure, vibrational properties and transport for the p-type semiconductors, SrAg$Ch$F ($Ch$=S, Se and Te). We find soft phonons with low frequency optical branches intersecting the acoustic modes below 50 $
In the present study, the structural, electronic, optical and thermoelectric properties of two isostructural chalcogenide materials, NaInS2 and NaInSe2 with hexagonal symmetry (R-3m) have been studied using the first principles method. A very good ag
We present results of electronic band structure, Fermi surface and electron transport properties calculations in orthorhombic $n$- and $p$-type SnSe, applying Korringa-Kohn-Rostoker method and Boltzmann transport approach. The analysis accounted for
Transition metal dichalcogenides are rich in their structural phases, e.g. 1T-TaS2 and 1T-TaSe2 form charge density wave (CDW) under low temperature with interesting and exotic properties. Here, we present a systematic study of different structures i
The discovery of graphene makes it highly desirable to seek new two-dimensional materials. Through first-principles investigation, we predict two-dimensional materials of ReN$_{2}$: honeycomb and tetragonal structures. The phonon spectra establish th