ترغب بنشر مسار تعليمي؟ اضغط هنا

Gravitational sensing with weak value based optical sensors

152   0   0.0 ( 0 )
 نشر من قبل Philippe Lewalle
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using weak values amplification angular resolution limits, we theoretically investigate the gravitational sensing of objects. By inserting a force-sensing pendulum into a weak values interferometer, the optical response can sense accelerations to a few 10s of $mathrm{zepto}text{-}mathrm{g}/sqrt{mathrm{Hz}}$, with optical powers of $1~mathrm{mW}$. We convert this precision into range and mass sensitivity, focusing in detail on simple and torsion pendula. Various noise sources present are discussed, as well as the necessary cooling that should be applied to reach the desired levels of precision.



قيم البحث

اقرأ أيضاً

Beam alignment is an important practical aspect of the application of squeezed states of light. Misalignments in the detection of squeezed light result in a reduction of the observable squeezing level. In the case of squeezed vacuum fields that conta in only very few photons, special measures must be taken in order to sense and control the alignment of the essentially dark beam. The GEO600 gravitational wave detector employs a squeezed vacuum source to improve its detection sensitivity beyond the limits set by classical quantum shot noise. Here, we present our design and implementation of an alignment sensing and control scheme that ensures continuous optimal alignment of the squeezed vacuum field at GEO 600 on long time scales in the presence of free-swinging optics. This first demonstration of a squeezed light automatic alignment system will be of particular interest for future long-term applications of squeezed vacuum states of light.
Differential wavefront sensing is an essential technique for optimising the performance of many precision interferometric experiments. Perhaps the most extensive application of this is for alignment sensing using radio-frequency beats measured with q uadrant photodiodes. Here we present a new technique that uses optical demodulation to measure such optical beats at significantly higher resolutions using commercial laboratory equipment. We experimentally demonstrate that the images captured can be digitally processed to generate wavefront error signals and use these in a closed loop control system for correct wavefront errors for alignment and mode-matching a beam into an optical cavity to 99.9%. This experiment paves the way for the correction of even higher order errors when paired with higher order wavefront actuators. Such a sensing scheme could find use in optimizing complex interferometers consisting of coupled cavities, such as those found in gravitational wave detectors, or simply just for sensing higher order wavefront errors in heterodyne interferometric table-top experiments.
We improve the precision of the interferometric weak-value-based beam deflection measurement by introducing a power recycling mirror, creating a resonant cavity. This results in emph{all} the light exiting to the detector with a large deflection, thu s eliminating the inefficiency of the rare postselection. The signal-to-noise ratio of the deflection is itself magnified by the weak value. We discuss ways to realize this proposal, using a transverse beam filter and different cavity designs.
Precise knowledge of an optical devices frequency response is crucial for it to be useful in most applications. Traditional methods for determining the frequency response of an optical system (e.g. optical cavity or waveguide modulator) usually rely on calibrated broadband photo-detectors or complicated RF mixdown operations. As the bandwidths of these devices continue to increase, there is a growing need for a characterization method that does not have bandwidth limitations, or require a previously calibrated device. We demonstrate a new calibration technique on an optical system (consisting of an optical cavity and a high-speed waveguide modulator) that is free from limitations imposed by detector bandwidth, and does not require a calibrated photo-detector or modulator. We use a low-frequency (DC) photo-detector to monitor the cavitys optical response as a function of modulation frequency, which is also used to determine the modulators frequency response. Knowledge of the frequency-dependent modulation depth allows us to more precisely determine the cavitys characteristics (free spectral range and linewidth). The precision and repeatability of our technique is demonstrated by measuring the different resonant frequencies of orthogonal polarization cavity modes caused by the presence of a non-linear crystal. Once the modulator has been characterized using this simple method, the frequency response of any passive optical element can be determined.
Miniaturized mechanical resonators have proven to be excellent force sensors. However, they usually rely on resonant sensing schemes, and their excellent performance cannot be utilized for the detection of static forces. Here, we report on a novel st atic-force sensing scheme and demonstrate it using optically levitated nanoparticles in vacuum. Our technique relies on an off-resonant interaction of the particle with a weak static force, and a resonant read-out of the displacement caused by this interaction. We demonstrate a force sensitivity of $10,mathrm{aN}$ to static gravitational and electric forces acting on the particle. Our work not only provides a tool for the closer investigation of short-range forces, but also marks an important step towards the realization of matter-wave interferometry with macroscopic objects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا