ﻻ يوجد ملخص باللغة العربية
Precise knowledge of an optical devices frequency response is crucial for it to be useful in most applications. Traditional methods for determining the frequency response of an optical system (e.g. optical cavity or waveguide modulator) usually rely on calibrated broadband photo-detectors or complicated RF mixdown operations. As the bandwidths of these devices continue to increase, there is a growing need for a characterization method that does not have bandwidth limitations, or require a previously calibrated device. We demonstrate a new calibration technique on an optical system (consisting of an optical cavity and a high-speed waveguide modulator) that is free from limitations imposed by detector bandwidth, and does not require a calibrated photo-detector or modulator. We use a low-frequency (DC) photo-detector to monitor the cavitys optical response as a function of modulation frequency, which is also used to determine the modulators frequency response. Knowledge of the frequency-dependent modulation depth allows us to more precisely determine the cavitys characteristics (free spectral range and linewidth). The precision and repeatability of our technique is demonstrated by measuring the different resonant frequencies of orthogonal polarization cavity modes caused by the presence of a non-linear crystal. Once the modulator has been characterized using this simple method, the frequency response of any passive optical element can be determined.
We have built a frequency chain which enables to measure the absolute frequency of a laser emitting in the 28-31 THz frequency range and stabilized onto a molecular absorption line. The set-up uses an optical frequency comb and an ultrastable 1.55 $m
We describe the measurement of the secular motion of a levitated nanoparticle in a Paul trap with a CMOS camera. This simple method enables us to reach signal-to-noise ratios as good as 10$^{6}$ with a displacement sensitivity better than 10$^{-16},m
Recent developments in photo-detectors and photo-detector systems are reviewed. The main emphasis is made on Silicon Photo-Multipliers (SiPM) - novel and very attractive photo-detectors. Their main features are described. Properties of detectors manu
Time- and number-resolved photon detection is crucial for photonic quantum information processing. Existing photon-number-resolving (PNR) detectors usually have limited timing and dark-count performance or require complex fabrication and operation. H
Timescale comparison between optical atomic clocks over ground-to-space and terrestrial free-space laser links will have enormous benefits for fundamental and applied science, from measurements of fundamental constants and searches for dark matter, t