ﻻ يوجد ملخص باللغة العربية
Modern datasets and models are notoriously difficult to explore and analyze due to their inherent high dimensionality and massive numbers of samples. Existing visualization methods which employ dimensionality reduction to two or three dimensions are often inefficient and/or ineffective for these datasets. This paper introduces t-SNE-CUDA, a GPU-accelerated implementation of t-distributed Symmetric Neighbor Embedding (t-SNE) for visualizing datasets and models. t-SNE-CUDA significantly outperforms current implementations with 50-700x speedups on the CIFAR-10 and MNIST datasets. These speedups enable, for the first time, visualization of the neural network activations on the entire ImageNet dataset - a feat that was previously computationally intractable. We also demonstrate visualization performance in the NLP domain by visualizing the GloVe embedding vectors. From these visualizations, we can draw interesting conclusions about using the L2 metric in these embedding spaces. t-SNE-CUDA is publicly available athttps://github.com/CannyLab/tsne-cuda
We introduce an improved unsupervised clustering protocol specially suited for large-scale structured data. The protocol follows three steps: a dimensionality reduction of the data, a density estimation over the low dimensional representation of the
A first line of attack in exploratory data analysis is data visualization, i.e., generating a 2-dimensional representation of data that makes clusters of similar points visually identifiable. Standard Johnson-Lindenstrauss dimensionality reduction do
t-SNE is one of the most commonly used force-based nonlinear dimensionality reduction methods. This paper has two contributions: the first is forceful colorings, an idea that is also applicable to other force-based methods (UMAP, ForceAtlas2,...). In
t-Distributed Stochastic Neighbor Embedding (t-SNE) is one of the most widely used dimensionality reduction methods for data visualization, but it has a perplexity hyperparameter that requires manual selection. In practice, proper tuning of t-SNE per
This study investigates the theoretical foundations of t-distributed stochastic neighbor embedding (t-SNE), a popular nonlinear dimension reduction and data visualization method. A novel theoretical framework for the analysis of t-SNE based on the gr