ﻻ يوجد ملخص باللغة العربية
We address the dephasing dynamics of a qubit as an effective process to estimate the temperature of its environment. Our scheme is inherently quantum, since it exploits the sensitivity of the qubit to decoherence, and does not require thermalization with the system under investigation. We optimize the quantum Fisher information with respect to the interaction time and the temperature in the case of Ohmic-like environments. We also find explicitly the qubit measurement achieving the quantum Cramer- Rao bound to precision. Our results show that the conditions for optimal estimation originate from a non-trivial interplay between the dephasing dynamics and the Ohmic structure of the environment. In general, optimal estimation is achieved neither when the qubit approaches the stationary state, nor for full dephasing.
Most studies of collective dephasing for bipartite as well as multipartite quantum systems focus on a very specific orientation of magnetic field, that is, z-orientation. However, in practical situations, there are always small fluctuations in stocha
We analyze and demonstrate the feasibility and superiority of linear optical single-qubit fingerprinting over its classical counterpart. For one-qubit fingerprinting of two-bit messages, we prepare `tetrahedral qubit states experimentally and show th
We introduce a general framework for thermometry based on collisional models, where ancillas probe the temperature of the environment through an intermediary system. This allows for the generation of correlated ancillas even if they are initially ind
We consider the effects of plane-wave states scattering off finite graphs, as an approach to implementing single-qubit unitary operations within the continuous-time quantum walk framework of universal quantum computation. Four semi-infinite tails are
Magnetic solitons can constitute a means for manipulating qubits from a distance. This would overcome the necessity of directly applying selective magnetic fields, which is unfeasible in the case of a matrix of qubits embedded in a solid-state quantu