ﻻ يوجد ملخص باللغة العربية
We consider the effects of plane-wave states scattering off finite graphs, as an approach to implementing single-qubit unitary operations within the continuous-time quantum walk framework of universal quantum computation. Four semi-infinite tails are attached at arbitrary points of a given graph, representing the input and output registers of a single qubit. For a range of momentum eigenstates, we enumerate all of the graphs with up to $n=9$ vertices for which the scattering implements a single-qubit gate. As $n$ increases, the number of new unitary operations increases exponentially, and for $n>6$ the majority correspond to rotations about axes distributed roughly uniformly across the Bloch sphere. Rotations by both rational and irrational multiples of $pi$ are found.
Composite pulses are an efficient tool for robust quantum control. In this work, we derive the form of the composite pulse sequence to implement robust single-qubit gates in a three-level system, where two low-energy levels act as a qubit. The compos
Undoing a unitary operation, $i.e$. reversing its action, is the task of canceling the effects of a unitary evolution on a quantum system, and it may be easily achieved when the unitary is known. Given a unitary operation without any specific descrip
Recent experimental work on superconducting transmon qubits in 3D cavities show that their coherence times are increased by an order of magnitude compared to their 2D cavity counterparts. However to take advantage of these coherence times while scali
We experimentally demonstrate the underlying physical mechanism of the recently proposed protocol for superreplication of quantum phase gates [W. Dur, P. Sekatski, and M. Skotiniotis, Phys. Rev. Lett. 114, 120503 (2015)], which allows to produce up t
Coherent operations constitutive for the implementation of single and multi-qubit quantum gates with trapped ions are demonstrated that are robust against variations in experimental parameters and intrinsically indeterministic system parameters. In p