ﻻ يوجد ملخص باللغة العربية
The Decision Model and Notation (DMN) is a recent OMG standard for the elicitation and representation of decision models, and for managing their interconnection with business processes. DMN builds on the notion of decision tables, and their combination into more complex decision requirements graphs (DRGs), which bridge between business process models and decision logic models. DRGs may rely on additional, external business knowledge models, whose functioning is not part of the standard. In this work, we consider one of the most important types of business knowledge, namely background knowledge that conceptually accounts for the structural aspects of the domain of interest, and propose decision knowledge bases (DKBs), which semantically combine DRGs modeled in DMN, and domain knowledge captured by means of first-order logic with datatypes. We provide a logic-based semantics for such an integration, and formalize different DMN reasoning tasks for DKBs. We then consider background knowledge formulated as a description logic ontology with datatypes, and show how the main verification tasks for DMN in this enriched setting can be formalized as standard DL reasoning services, and actually carried out in ExpTime. We discuss the effectiveness of our framework on a case study in maritime security.
Comprehending procedural text, e.g., a paragraph describing photosynthesis, requires modeling actions and the state changes they produce, so that questions about entities at different timepoints can be answered. Although several recent systems have s
Background Knowledge graphs (KGs), especially medical knowledge graphs, are often significantly incomplete, so it necessitating a demand for medical knowledge graph completion (MedKGC). MedKGC can find new facts based on the exited knowledge in the K
As a contribution to the challenge of building game-playing AI systems, we develop and analyse a formal language for representing and reasoning about strategies. Our logical language builds on the existing general Game Description Language (GDL) and
The inherent inflexibility and incompleteness of commonsense knowledge bases (KB) has limited their usefulness. We describe a system called Displacer for performing KB queries extended with the analogical capabilities of the word2vec distributional s
In this work we describe preferential Description Logics of typicality, a nonmonotonic extension of standard Description Logics by means of a typicality operator T allowing to extend a knowledge base with inclusions of the form T(C) v D, whose intuit