ترغب بنشر مسار تعليمي؟ اضغط هنا

The SAMI Galaxy Survey: embedded discs and radial trends in outer dynamical support across the Hubble sequence

293   0   0.0 ( 0 )
 نشر من قبل Caroline Foster
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the balance in dynamical support of 384 galaxies with stellar kinematics out to >1.5R_e in the Sydney AAO Multi-object Integral Field (SAMI) Galaxy Survey. We present radial dynamical profiles of the local rotation dominance parameter, V/sigma, and local spin, lambda_loc. Although there is a broad range in amplitude, most kinematic profiles monotonically increase across the probed radial range. We do not find many galaxies with kinematic transitions such as those expected between the inner in-situ and outer accreted stars within the radial range probed. We compare the V/sigma gradient and maximum values to the visual morphologies of the galaxies to better understand the link between visual and kinematic morphologies. We find that the radial distribution of dynamical support in galaxies is linked to their visual morphology. Late-type systems have higher rotational support at all radii and steeper V/sigma gradients compared to early-type galaxies. We perform a search for embedded discs, which are rotationally supported discy structures embedded within large scale slowly or non-rotating structures. Visual inspection of the kinematics reveals at most three galaxies (out of 384) harbouring embedded discs. This is more than an order of magnitude fewer than the observed fraction in some local studies. Our tests suggest that this tension can be attributed to differences in the sample selection, spatial sampling and beam smearing due to seeing.

قيم البحث

اقرأ أيضاً

We study the Fundamental Plane (FP) for a volume- and luminosity-limited sample of 560 early-type galaxies from the SAMI survey. Using r-band sizes and luminosities from new Multi-Gaussian Expansion (MGE) photometric measurements, and treating lumino sity as the dependent variable, the FP has coefficients a=1.294$pm$0.039, b= 0.912$pm$0.025, and zero-point c= 7.067$pm$0.078. We leverage the high signal-to-noise of SAMI integral field spectroscopy, to determine how structural and stellar-population observables affect the scatter about the FP. The FP residuals correlate most strongly (8$sigma$ significance) with luminosity-weighted simple-stellar-population (SSP) age. In contrast, the structural observables surface mass density, rotation-to-dispersion ratio, Sersic index and projected shape all show little or no significant correlation. We connect the FP residuals to the empirical relation between age (or stellar mass-to-light ratio $Upsilon_star$) and surface mass density, the best predictor of SSP age amongst parameters based on FP observables. We show that the FP residuals (anti-)correlate with the residuals of the relation between surface density and $Upsilon_star$. This correlation implies that part of the FP scatter is due to the broad age and $Upsilon_star$ distribution at any given surface mass density. Using virial mass and $Upsilon_star$ we construct a simulated FP and compare it to the observed FP. We find that, while the empirical relations between observed stellar population relations and FP observables are responsible for most (75%) of the FP scatter, on their own they do not explain the observed tilt of the FP away from the virial plane.
We study the internal radial gradients of the stellar populations in a sample comprising 522 early-type galaxies (ETGs) from the SAMI (Sydney- AAO Multi-object Integral field spectrograph) Galaxy Survey. We stack the spectra of individual spaxels in radial bins, and derive basic stellar population properties: total metallicity ([Z/H]), [Mg/Fe], [C/Fe] and age. The radial gradient ($ abla$) and central value of the fits (evaluated at R$_e$/4) are compared against a set of six possible drivers of the trends. We find that velocity dispersion ($sigma$) - or, equivalently gravitational potential - is the dominant driver of the chemical composition gradients. Surface mass density is also correlated with the trends, especially with stellar age. The decrease of $ abla$[Mg/Fe] with increasing $sigma$ is contrasted by a rather shallow dependence of $ abla$[Z/H] with $sigma$ (although this radial gradient is overall rather steep). This result, along with a shallow age slope at the massive end, imposes stringent constraints on the progenitors of the populations that contribute to the formation of the outer envelopes of ETGs. The SAMI sample is split between a field sample and a cluster sample. Only weak environment-related differences are found, most notably a stronger dependence of central total metallicity ([Z/H]$_{e4}$) with $sigma$, along with a marginal trend of $ abla$[Z/H] to steepen in cluster galaxies, a result that is not followed by [Mg/Fe]. The results presented here serve as constraints on numerical models of the formation and evolution of ETGs.
We present a new set of index-based measurements of [$alpha$/Fe] for a sample of 2093 galaxies in the SAMI Galaxy Survey. Following earlier work, we fit a global relation between [$alpha$/Fe] and the galaxy velocity dispersion $sigma$ for red sequenc e galaxies, [$alpha$/Fe]=(0.378$pm$0.009)log($sigma$/100)+(0.155$pm$0.003). We observe a correlation between the residuals and the local environmental surface density, whereas no such relation exists for blue cloud galaxies. In the full sample, we find that elliptical galaxies in high-density environments are $alpha$-enhanced by up to 0.057$pm$0.014 dex at velocity dispersions $sigma$<100 km/s, compared with those in low-density environments. This $alpha$-enhancement is morphology-dependent, with the offset decreasing along the Hubble sequence towards spirals, which have an offset of 0.019$pm$0.014 dex. At low velocity dispersion and controlling for morphology, we estimate that star formation in high-density environments is truncated $sim1$ Gyr earlier than in low-density environments. For elliptical galaxies only, we find support for a parabolic relationship between [$alpha$/Fe] and $sigma$, with an environmental $alpha$-enhancement of at least 0.03 dex. This suggests strong contributions from both environment and mass-based quenching mechanisms. However, there is no evidence for this behaviour in later morphological types.
We present the ~800 star formation rate maps for the SAMI Galaxy Survey based on H{alpha} emission maps, corrected for dust attenuation via the Balmer decrement, that are included in the SAMI Public Data Release 1. We mask out spaxels contaminated by non-stellar emission using the [O III]/H{beta}, [N II]/H{alpha}, [S II]/H{alpha}, and [O I]/H{alpha} line ratios. Using these maps, we examine the global and resolved star-forming main sequences of SAMI galaxies as a function of morphology, environmental density, and stellar mass. Galaxies further below the star-forming main sequence are more likely to have flatter star formation profiles. Early-type galaxies split into two populations with similar stellar masses and central stellar mass surface densities. The main sequence population has centrally-concentrated star formation similar to late-type galaxies, while galaxies >3{sigma} below the main sequence show significantly reduced star formation most strikingly in the nuclear regions. The split populations support a two-step quenching mechanism, wherein halo mass first cuts off the gas supply and remaining gas continues to form stars until the local stellar mass surface density can stabilize the reduced remaining fuel against further star formation. Across all morphologies, galaxies in denser environments show a decreased specific star formation rate from the outside in, supporting an environmental cause for quenching, such as ram-pressure stripping or galaxy interactions.
We present the stellar kinematic maps of a large sample of galaxies from the integral-field spectroscopic survey CALIFA. The sample comprises 300 galaxies displaying a wide range of morphologies across the Hubble sequence, from ellipticals to late-ty pe spirals. This dataset allows us to homogeneously extract stellar kinematics up to several effective radii. In this paper, we describe the level of completeness of this subset of galaxies with respect to the full CALIFA sample, as well as the virtues and limitations of the kinematic extraction compared to other well-known integral-field surveys. In addition, we provide averaged integrated velocity dispersion radial profiles for different galaxy types, which are particularly useful to apply aperture corrections for single aperture measurements or poorly resolved stellar kinematics of high-redshift sources. The work presented in this paper sets the basis for the study of more general properties of galaxies that will be explored in subsequent papers of the survey.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا