ترغب بنشر مسار تعليمي؟ اضغط هنا

Stellar kinematics across the Hubble sequence in the CALIFA survey: General properties and aperture corrections

59   0   0.0 ( 0 )
 نشر من قبل Jes\\'us Falc\\'on-Barroso
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the stellar kinematic maps of a large sample of galaxies from the integral-field spectroscopic survey CALIFA. The sample comprises 300 galaxies displaying a wide range of morphologies across the Hubble sequence, from ellipticals to late-type spirals. This dataset allows us to homogeneously extract stellar kinematics up to several effective radii. In this paper, we describe the level of completeness of this subset of galaxies with respect to the full CALIFA sample, as well as the virtues and limitations of the kinematic extraction compared to other well-known integral-field surveys. In addition, we provide averaged integrated velocity dispersion radial profiles for different galaxy types, which are particularly useful to apply aperture corrections for single aperture measurements or poorly resolved stellar kinematics of high-redshift sources. The work presented in this paper sets the basis for the study of more general properties of galaxies that will be explored in subsequent papers of the survey.


قيم البحث

اقرأ أيضاً

Based on the stellar orbit distribution derived from orbit-superposition Schwarzschild models, we decompose each of 250 representative present-day galaxies into four orbital components: cold with strong rotation, warm with weak rotation, hot with dom inant random motion and counter-rotating (CR). We rebuild the surface brightness ($Sigma$) of each orbital component and we present in figures and tables a quantification of their morphologies using the Sersic index textit{n}, concentration $C = log{(Sigma_{0.1R_e}/Sigma_{R_e})}$ and intrinsic flattening $q_{mathrm{Re}}$ and $q_{mathrm{Rmax}}$, with $R_e$ the half-light-radius and $R_{mathrm{max}}$ the CALIFA data coverage. We find that: (1) kinematic hotter components are generally more concentrated and rounder than colder components, and (2) all components become more concentrated and thicker/rounder in more massive galaxies; they change from disk-like in low mass late-type galaxies to bulge-like in high-mass early type galaxies. Our findings suggest that Sersic textit{n} is not a good discriminator between rotating bulges and non-rotating bulges. The luminosity fraction of cold orbits $f_{rm cold}$ is well correlated with the photometrically-decomposed disk fraction $f_{rm disk}$ as $f_{mathrm{cold}} = 0.14 + 0.23f_{mathrm{mathrm{disk}}}$. Similarly, the hot orbit fraction $f_{rm hot}$ is correlated with the bulge fraction $f_{rm bulge}$ as $f_{mathrm{hot}} = 0.19 + 0.31f_{mathrm{mathrm{bulge}}}$. The warm orbits mainly contribute to disks in low-mass late-type galaxies, and to bulges in high-mass early-type galaxies. The cold, warm, and hot components generally follow the same morphology ($epsilon = 1-q_{rm Rmax}$) versus kinematics ($sigma_z^2/overline{V_{mathrm{tot}}^2}$) relation as the thin disk, thick disk/pseudo bulge, and classical bulge identified from cosmological simulations.
[Abridged] We present the apparent stellar angular momentum of 300 galaxies across the Hubble sequence, using integral-field spectroscopic data from the CALIFA survey. Adopting the same $lambda_mathrm{R}$ parameter previously used to distinguish betw een slow and fast rotating early-type (elliptical and lenticular) galaxies, we show that spiral galaxies as expected are almost all fast rotators. Given the extent of our data, we provide relations for $lambda_mathrm{R}$ measured in different apertures, including
This work investigates the effect of the aperture size on derived galaxy properties for which we have spatially-resolved optical spectra. We focus on some indicators of star formation activity and dust attenuation for spiral galaxies that have been w idely used in previous work on galaxy evolution. We have used 104 spiral galaxies from the CALIFA survey for which 2D spectroscopy with complete spatial coverage is available. From the 3D cubes we have derived growth curves of the most conspicuous Balmer emission lines (Halpha, Hbeta) for circular apertures of different radii centered at the galaxys nucleus after removing the underlying stellar continuum. We find that the Halpha flux (f(Halpha)) growth curve follows a well defined sequence with aperture radius showing low dispersion around the median value. From this analysis, we derive aperture corrections for galaxies in different magnitude and redshift intervals. Once stellar absorption is properly accounted for, the f(Halpha)/f(Hbeta) ratio growth curve shows a smooth decline, pointing towards the absence of differential dust attenuation as a function of radius. Aperture corrections as a function of the radius are provided in the interval [0.3,2.5]R_50. Finally, the Halpha equivalent width (EW(Halpha)) growth curve increases with the size of the aperture and shows a very large dispersion for small apertures. This large dispersion prevents the use of reliable aperture corrections for this quantity. In addition, this result suggests that separating star-forming and quiescent galaxies based on observed EW(Halpha) through small apertures is likely to result in low EW(Halpha) star-forming galaxies begin classified as quiescent.
Deriving circular velocities of galaxies from stellar kinematics can provide an estimate of their total dynamical mass, provided a contribution from the velocity dispersion of the stars is taken into account. Molecular gas (e.g., CO) on the other han d, is a dynamically cold tracer and hence acts as an independent circular velocity estimate without needing such a correction. In this paper we test the underlying assumptions of three commonly used dynamical models, deriving circular velocities from stellar kinematics of 54 galaxies (S0-Sd) that have observations of both stellar kinematics from the CALIFA survey, and CO kinematics from the EDGE survey. We test the Asymmetric Drift Correction (ADC) method, as well as Jeans, and Schwarzschild models. The three methods each reproduce the CO circular velocity at 1Re to within 10%. All three methods show larger scatter (up to 20%) in the inner regions (R < 0.4Re) which may be due to an increasingly spherical mass distribution (which is not captured by the thin disk assumption in ADC), or non-constant stellar M/L ratios (for both the JAM and Schwarzschild models). This homogeneous analysis of stellar and gaseous kinematics validates that all three models can recover Mdyn at 1Re to better than 20%, but users should be mindful of scatter in the inner regions where some assumptions may break down.
We study the balance in dynamical support of 384 galaxies with stellar kinematics out to >1.5R_e in the Sydney AAO Multi-object Integral Field (SAMI) Galaxy Survey. We present radial dynamical profiles of the local rotation dominance parameter, V/sig ma, and local spin, lambda_loc. Although there is a broad range in amplitude, most kinematic profiles monotonically increase across the probed radial range. We do not find many galaxies with kinematic transitions such as those expected between the inner in-situ and outer accreted stars within the radial range probed. We compare the V/sigma gradient and maximum values to the visual morphologies of the galaxies to better understand the link between visual and kinematic morphologies. We find that the radial distribution of dynamical support in galaxies is linked to their visual morphology. Late-type systems have higher rotational support at all radii and steeper V/sigma gradients compared to early-type galaxies. We perform a search for embedded discs, which are rotationally supported discy structures embedded within large scale slowly or non-rotating structures. Visual inspection of the kinematics reveals at most three galaxies (out of 384) harbouring embedded discs. This is more than an order of magnitude fewer than the observed fraction in some local studies. Our tests suggest that this tension can be attributed to differences in the sample selection, spatial sampling and beam smearing due to seeing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا