ترغب بنشر مسار تعليمي؟ اضغط هنا

High-dimensional estimation via sum-of-squares proofs

88   0   0.0 ( 0 )
 نشر من قبل Tselil Schramm
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Estimation is the computational task of recovering a hidden parameter $x$ associated with a distribution $D_x$, given a measurement $y$ sampled from the distribution. High dimensional estimation problems arise naturally in statistics, machine learning, and complexity theory. Many high dimensional estimation problems can be formulated as systems of polynomial equations and inequalities, and thus give rise to natural probability distributions over polynomial systems. Sum-of-squares proofs provide a powerful framework to reason about polynomial systems, and further there exist efficient algorithms to search for low-degree sum-of-squares proofs. Understanding and characterizing the power of sum-of-squares proofs for estimation problems has been a subject of intense study in recent years. On one hand, there is a growing body of work utilizing sum-of-squares proofs for recovering solutions to polynomial systems when the system is feasible. On the other hand, a general technique referred to as pseudocalibration has been developed towards showing lower bounds on the degree of sum-of-squares proofs. Finally, the existence of sum-of-squares refutations of a polynomial system has been shown to be intimately connected to the existence of spectral algorithms. In this article we survey these developments.


قيم البحث

اقرأ أيضاً

249 - Boaz Barak , David Steurer 2014
In order to obtain the best-known guarantees, algorithms are traditionally tailored to the particular problem we want to solve. Two recent developments, the Unique Games Conjecture (UGC) and the Sum-of-Squares (SOS) method, surprisingly suggest that this tailoring is not necessary and that a single efficient algorithm could achieve best possible guarantees for a wide range of different problems. The Unique Games Conjecture (UGC) is a tantalizing conjecture in computational complexity, which, if true, will shed light on the complexity of a great many problems. In particular this conjecture predicts that a single concrete algorithm provides optimal guarantees among all efficient algorithms for a large class of computational problems. The Sum-of-Squares (SOS) method is a general approach for solving systems of polynomial constraints. This approach is studied in several scientific disciplines, including real algebraic geometry, proof complexity, control theory, and mathematical programming, and has found applications in fields as diverse as quantum information theory, formal verification, game theory and many others. We survey some connections that were recently uncovered between the Unique Games Conjecture and the Sum-of-Squares method. In particular, we discuss new tools to rigorously bound the running time of the SOS method for obtaining approximate solutions to hard optimization problems, and how these tools give the potential for the sum-of-squares method to provide new guarantees for many problems of interest, and possibly to even refute the UGC.
We consider two problems that arise in machine learning applications: the problem of recovering a planted sparse vector in a random linear subspace and the problem of decomposing a random low-rank overcomplete 3-tensor. For both problems, the best kn own guarantees are based on the sum-of-squares method. We develop new algorithms inspired by analyses of the sum-of-squares method. Our algorithms achieve the same or similar guarantees as sum-of-squares for these problems but the running time is significantly faster. For the planted sparse vector problem, we give an algorithm with running time nearly linear in the input size that approximately recovers a planted sparse vector with up to constant relative sparsity in a random subspace of $mathbb R^n$ of dimension up to $tilde Omega(sqrt n)$. These recovery guarantees match the best known ones of Barak, Kelner, and Steurer (STOC 2014) up to logarithmic factors. For tensor decomposition, we give an algorithm with running time close to linear in the input size (with exponent $approx 1.086$) that approximately recovers a component of a random 3-tensor over $mathbb R^n$ of rank up to $tilde Omega(n^{4/3})$. The best previous algorithm for this problem due to Ge and Ma (RANDOM 2015) works up to rank $tilde Omega(n^{3/2})$ but requires quasipolynomial time.
We study a statistical model for the tensor principal component analysis problem introduced by Montanari and Richard: Given a order-$3$ tensor $T$ of the form $T = tau cdot v_0^{otimes 3} + A$, where $tau geq 0$ is a signal-to-noise ratio, $v_0$ is a unit vector, and $A$ is a random noise tensor, the goal is to recover the planted vector $v_0$. For the case that $A$ has iid standard Gaussian entries, we give an efficient algorithm to recover $v_0$ whenever $tau geq omega(n^{3/4} log(n)^{1/4})$, and certify that the recovered vector is close to a maximum likelihood estimator, all with high probability over the random choice of $A$. The previous best algorithms with provable guarantees required $tau geq Omega(n)$. In the regime $tau leq o(n)$, natural tensor-unfolding-based spectral relaxations for the underlying optimization problem break down (in the sense that their integrality gap is large). To go beyond this barrier, we use convex relaxations based on the sum-of-squares method. Our recovery algorithm proceeds by rounding a degree-$4$ sum-of-squares relaxations of the maximum-likelihood-estimation problem for the statistical model. To complement our algorithmic results, we show that degree-$4$ sum-of-squares relaxations break down for $tau leq O(n^{3/4}/log(n)^{1/4})$, which demonstrates that improving our current guarantees (by more than logarithmic factors) would require new techniques or might even be intractable. Finally, we show how to exploit additional problem structure in order to solve our sum-of-squares relaxations, up to some approximation, very efficiently. Our fastest algorithm runs in nearly-linear time using shifted (matrix) power iteration and has similar guarantees as above. The analysis of this algorithm also confirms a variant of a conjecture of Montanari and Richard about singular vectors of tensor unfoldings.
We develop efficient algorithms for estimating low-degree moments of unknown distributions in the presence of adversarial outliers. The guarantees of our algorithms improve in many cases significantly over the best previous ones, obtained in recent w orks of Diakonikolas et al, Lai et al, and Charikar et al. We also show that the guarantees of our algorithms match information-theoretic lower-bounds for the class of distributions we consider. These improved guarantees allow us to give improved algorithms for independent component analysis and learning mixtures of Gaussians in the presence of outliers. Our algorithms are based on a standard sum-of-squares relaxation of the following conceptually-simple optimization problem: Among all distributions whose moments are bounded in the same way as for the unknown distribution, find the one that is closest in statistical distance to the empirical distribution of the adversarially-corrupted sample.
We study planted problems---finding hidden structures in random noisy inputs---through the lens of the sum-of-squares semidefinite programming hierarchy (SoS). This family of powerful semidefinite programs has recently yielded many new algorithms for planted problems, often achieving the best known polynomial-time guarantees in terms of accuracy of recovered solutions and robustness to noise. One theme in recent work is the design of spectral algorithms which match the guarantees of SoS algorithms for planted problems. Classical spectral algorithms are often unable to accomplish this: the twist in these new spectral algorithms is the use of spectral structure of matrices whose entries are low-degree polynomials of the input variables. We prove that for a wide class of planted problems, including refuting random constraint satisfaction problems, tensor and sparse PCA, densest-k-subgraph, community detection in stochastic block models, planted clique, and others, eigenvalues of degree-d matrix polynomials are as powerful as SoS semidefinite programs of roughly degree d. For such problems it is therefore always possible to match the guarantees of SoS without solving a large semidefinite program. Using related ideas on SoS algorithms and low-degree matrix polynomials (and inspired by recent work on SoS and the planted clique problem by Barak et al.), we prove new nearly-tight SoS lower bounds for the tensor and sparse principal component analysis problems. Our lower bounds for sparse principal component analysis are the first to suggest that going beyond existing algorithms for this problem may require sub-exponential time.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا