ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurement of the relative $B^{-} !rightarrow D^{0} / D^{*0} / D^{**0} mu^{-} overline{ u}_mu$ branching fractions using $B^{-}$ mesons from $overline{B}{}_{s2}^{*0}$ decays

76   0   0.0 ( 0 )
 نشر من قبل Matthew Rudolph
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The decay of the narrow resonance $overline{B}{}_{s2}^{*0}!rightarrow B^- K^+$ can be used to determine the $B^-$ momentum in partially reconstructed decays without any assumptions on the decay products of the $B^-$ meson. This technique is employed for the first time to distinguish contributions from $D^0$, $D^{*0}$, and higher-mass charmed states ($D^{**0}$) in semileptonic $B^-$ decays by using the missing-mass distribution. The measurement is performed using a data sample corresponding to an integrated luminosity of 3.0 fb${}^{-1}$ collected with the LHCb detector in $pp$ collisions at center-of-mass energies of 7 and 8 TeV. The resulting branching fractions relative to the inclusive $B^- !rightarrow D^0 X mu^- overline{ u}_mu$ are $f_{D^0} = mathcal{B}( B^- rightarrow D^0mu^-overline{ u}_mu )/mathcal{B}( B^- rightarrow D^0 X mu^- overline{ u}_mu ) = 0.25 pm 0.06$, $f_{D^{**0}} = mathcal{B}( B^- rightarrow ( D^{**0} rightarrow D^0 X)mu^-overline{ u}_mu )/mathcal{B}( B^- rightarrow D^0 X mu^- overline{ u}_mu ) = 0.21 pm 0.07$, with $f_{D^{*0}} = 1 - f_{D^0} - f_{D^{**0}}$ making up the remainder.



قيم البحث

اقرأ أيضاً

The branching fraction ratio $mathcal{R}(D^{*}) equiv mathcal{B}(overline{B}^0 to D^{*+}tau^{-}overline{ u}_{tau})/mathcal{B}(overline{B}^0 to D^{*+}mu^{-}overline{ u}_{mu})$ is measured using a sample of proton-proton collision data corresponding to 3.0invfb of integrated luminosity recorded by the LHCb experiment during 2011 and 2012. The tau lepton is identified in the decay mode $tau^{-} to mu^{-}overline{ u}_{mu} u_{tau}$. The semitauonic decay is sensitive to contributions from non-Standard-Model particles that preferentially couple to the third generation of fermions, in particular Higgs-like charged scalars. A multidimensional fit to kinematic distributions of the candidate $overline{B}^0$ decays gives $mathcal{R}(D^{*}) = 0.336 pm 0.027(stat) pm 0.030 (syst)$. This result, which is the first measurement of this quantity at a hadron collider, is $2.1$ standard deviations larger than the value expected from lepton universality in the Standard Model.
The first observation of the decay $B^0 rightarrow D^0 overline{D}{}^0 K^+ pi^-$ is reported using proton-proton collision data corresponding to an integrated luminosity of 4.7 $mathrm{fb}^{-1}$ collected by the LHCb experiment in 2011, 2012 and 2016 . The measurement is performed in the full kinematically allowed range of the decay outside of the $D^{*-}$ region. The ratio of the branching fraction relative to that of the control channel $B^0 rightarrow D^{*-} D^0 K^+$ is measured to be $mathcal{R} = (14.2 pm 1.1 pm 1.0)%$, where the first uncertainty is statistical and the second is systematic. The absolute branching fraction of $B^0 rightarrow D^0 overline{D}{}^0 K^+ pi^-$ decays is thus determined to be $mathcal{B}(B^0 rightarrow D^0 overline{D}{}^0 K^+ pi^-) = (3.50 pm 0.27 pm 0.26 pm 0.30) times 10^{-4}$, where the third uncertainty is due to the branching fraction of the control channel. This decay mode is expected to provide insights to spectroscopy and the charm-loop contributions in rare semileptonic decays.
The first observation of the $B_s^0 to overline{D}^{*0} phi$ decay is reported, with a significance of more than seven standard deviations, from an analysis of $pp$ collision data corresponding to an integrated luminosity of 3 fb$^{-1}$, collected wi th the LHCb detector at centre-of-mass energies of $7$ and $8$ TeV. The branching fraction is measured relative to that of the topologically similar decay $B^0 to overline{D}^0 pi^+pi^-$ and is found to be $mathcal{B}(B_s^0 to overline{D}^{*0} phi) = (3.7 pm 0.5 pm 0.3 pm 0.2) times 10^{-5}$, where the first uncertainty is statistical, the second systematic, and the third from the branching fraction of the $B^0 to overline{D}^0 pi^+pi^-$ decay. The fraction of longitudinal polarisation in this decay is measured to be ${f_{rm L} =(73 pm 15 pm 3)%}$. The most precise determination of the branching fraction for the $B_s^0 to overline{D}^{0} phi$ decay is also obtained, $mathcal{B}(B_s^0 to overline{D}^{0} phi) = (3.0 pm 0.3 pm 0.2 pm 0.2) times 10^{-5}$. An upper limit, $mathcal{B}(B^0 to overline{D}^{0} phi) < 2.0 (2.2) times 10^{-6}$ at $90%$ (95%) confidence level is set. A constraint on the $omega-phi$ mixing angle $delta$ is set at $|delta| < 5.2^circ~ (5.5^circ)$ at $90%$ ($95%$) confidence level.
The resonant substructures of $B^0 to overline{D}^0 pi^+pi^-$ decays are studied with the Dalitz plot technique. In this study a data sample corresponding to an integrated luminosity of 3.0 fb$^{-1}$ of $pp$ collisions collected by the LHCb detector is used. The branching fraction of the $B^0 to overline{D}^0 pi^+pi^-$ decay in the region $m(overline{D}^0pi^{pm})>2.1$ GeV$/c^2$ is measured to be $(8.46 pm 0.14 pm 0.29 pm 0.40) times 10^{-4}$, where the first uncertainty is statistical, the second is systematic and the last arises from the normalisation channel $B^0 to D^*(2010)^-pi^+$. The $pi^+pi^-$ S-wave components are modelled with the Isobar and K-matrix formalisms. Results of the Dalitz plot analyses using both models are presented. A resonant structure at $m(overline{D}^0pi^-) approx 2.8$ GeV$/c^{2}$ is confirmed and its spin-parity is determined for the first time as $J^P = 3^-$. The branching fraction, mass and width of this structure are determined together with those of the $D^*_0(2400)^-$ and $D^*_2(2460)^-$ resonances. The branching fractions of other $B^0 to overline{D}^0 h^0$ decay components with $h^0 to pi^+pi^-$ are also reported. Many of these branching fraction measurements are the most precise to date. The first observation of the decays $B^0 to overline{D}^0 f_0(500)$, $B^0 to overline{D}^0 f_0(980)$, $B^0 to overline{D}^0 rho(1450)$, $B^0 to D_3^*(2760)^- pi^+$ and the first evidence of $B^0 to overline{D}^0 f_0(2020)$ are presented.
The $CP$ violation observables $S$ and $C$ in the decay channel $B^0 !rightarrow D^+ D^-$ are determined from a sample of proton-proton collisions at center-of-mass energies of 7 and 8 TeV, collected by the LHCb experiment and corresponding to an int egrated luminosity of 3 fb$^{-1}$. The observable $S$ describes $CP$ violation in the interference between mixing and the decay amplitude, and $C$ parametrizes direct $CP$ violation in the decay. The following values are obtained from a flavor-tagged, decay-time-dependent analysis: begin{align*} S &= -0.54 , ^{+0.17}_{-0.16} , text{(stat)} pm 0.05 , text{(syst)},, ewline C &= phantom{-}0.26 , ^{+0.18}_{-0.17} , text{(stat)} pm 0.02 , text{(syst)},. end{align*} These values provide evidence for $CP$ violation at a significance level of 4.0 standard deviations. The phase shift due to higher-order Standard Model corrections is constrained to a small value of begin{align*} Deltaphi = -0.16,^{+0.19}_{-0.21},text{rad},. end{align*}
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا