ﻻ يوجد ملخص باللغة العربية
Ultrasound (US) is the most widely used fetal imaging technique. However, US images have limited capture range, and suffer from view dependent artefacts such as acoustic shadows. Compounding of overlapping 3D US acquisitions into a high-resolution volume can extend the field of view and remove image artefacts, which is useful for retrospective analysis including population based studies. However, such volume reconstructions require information about relative transformations between probe positions from which the individual volumes were acquired. In prenatal US scans, the fetus can move independently from the mother, making external trackers such as electromagnetic or optical tracking unable to track the motion between probe position and the moving fetus. We provide a novel methodology for image-based tracking and volume reconstruction by combining recent advances in deep learning and simultaneous localisation and mapping (SLAM). Tracking semantics are established through the use of a Residual 3D U-Net and the output is fed to the SLAM algorithm. As a proof of concept, experiments are conducted on US volumes taken from a whole body fetal phantom, and from the heads of real fetuses. For the fetal head segmentation, we also introduce a novel weak annotation approach to minimise the required manual effort for ground truth annotation. We evaluate our method qualitatively, and quantitatively with respect to tissue discrimination accuracy and tracking robustness.
Transrectal ultrasound (US) is the most commonly used imaging modality to guide prostate biopsy and its 3D volume provides even richer context information. Current methods for 3D volume reconstruction from freehand US scans require external tracking
3D ultrasound (US) is widely used for its rich diagnostic information. However, it is criticized for its limited field of view. 3D freehand US reconstruction is promising in addressing the problem by providing broad range and freeform scan. The exist
Visual object tracking was generally tackled by reasoning independently on fast processing algorithms, accurate online adaptation methods, and fusion of trackers. In this paper, we unify such goals by proposing a novel tracking methodology that takes
Computational ghost imaging is an imaging technique in which an object is imaged from light collected using a single-pixel detector with no spatial resolution. Recently, ghost cytometry has been proposed for a high-speed cell-classification method th
Reconstructed 3D ultrasound volume provides more context information compared to a sequence of 2D scanning frames, which is desirable for various clinical applications such as ultrasound-guided prostate biopsy. Nevertheless, 3D volume reconstruction