ﻻ يوجد ملخص باللغة العربية
Heterostructures made of itinerant ferromagnets and superconductors are studied. In contrast to most previous models, ferromagnetism is not enforced as an external Zeeman field but induced in a correlated single-band model (CSBM) that displays itinerant ferromagnetism as a mean-field ground state. This allows us to investigate the influence of an adjacent superconducting layer on the properties of the ferromagnet in a self-consistent Bogoliubov-de Gennes approach. The CSBM displays a variety features not present in the Zeeman exchange model that influence the behavior of order parameters close to the interface, as e.g. phase separation and the competition between magnetism and superconducting orders.
We review the present status of the experimental and theoretical research on the proximity effect in heterostructures composed of superconducting (S) and ferromagnetic (F) thin films. First, we discuss traditional effects originating from the oscilla
We report an investigation of the structural and electronic properties of hybrid superconductor/ferromagnet (S/F) bilayers of composition Nb/Cu$_{60}$Ni$_{40}$ prepared by magnetron sputtering. X-ray and neutron reflectometry show that both the overa
We investigate inverse proximity effects in a spin-triplet superconductor (TSC) interfaced with a ferromagnet (FM), assuming different types of magnetic profiles and chiral or helical pairings. The region of the coexistence of spin-triplet supercondu
In this work, magnetization dynamics is studied in superconductor/ferromagnet/superconductor three-layered films in a wide frequency, field, and temperature ranges using the broad-band ferromagnetic resonance measurement technique. It is shown that i
We study the physical properties of a ballistic heterostructure made of a ferromagnet (FM) and a spin-triplet superconductor (TSC) with a layered structure stacking along the direction perpendicular to the planes where a chiral px+ipy pairing occurs