ﻻ يوجد ملخص باللغة العربية
We report an investigation of the structural and electronic properties of hybrid superconductor/ferromagnet (S/F) bilayers of composition Nb/Cu$_{60}$Ni$_{40}$ prepared by magnetron sputtering. X-ray and neutron reflectometry show that both the overall interfacial roughness and vertical correlations of the roughness of different interfaces are lower for heterostructures deposited on Al$_2$O$_3$(1$bar{1}$02) substrates than for those deposited on Si(111). Mutual inductance experiments were then used to study the influence of the interfacial roughness on the superconducting transition temperature, $T_C$. These measurements revealed a $sim$ 4% higher $T_C$ in heterostructures deposited on Al$_2$O$_3$, compared to those on Si. We attribute this effect to a higher mean-free path of electrons in the S layer, caused by a suppression of diffusive scattering at the interfaces. However, the dependence of the $T_C$ on the thickness of the ferromagnetic layer is not significantly different in the two systems, indicating a weak influence of the interfacial roughness on the transparency for Cooper pairs.
We review the present status of the experimental and theoretical research on the proximity effect in heterostructures composed of superconducting (S) and ferromagnetic (F) thin films. First, we discuss traditional effects originating from the oscilla
Heterostructures made of itinerant ferromagnets and superconductors are studied. In contrast to most previous models, ferromagnetism is not enforced as an external Zeeman field but induced in a correlated single-band model (CSBM) that displays itiner
We report observation of strong magnetic proximity coupling in a heterostructured superconductor Sr$_2$VO$_3$FeAs, determined by the upper critical fields $H_{c2}(T)$ measurements up to 65 T. Using the resistivity and the radio-frequency measurements
We report the low-energy electrodynamics of a moderately clean A15 superconductor (SC) following ultrafast excitation to understand and manipulate terahertz (THz) quasi--particle (QP) transport by tuning pump photoexcitation of from competing orders.
We have investigated the structural, magnetic and superconducting properties of [Nb(1.5nm)/Fe(x)]$_{10}$ superlattices deposited on a thick Nb(50nm) layer. Our investigation showed that the Nb(50nm) layer grows epitaxially at 800$^circ$C on Al$_2$O$_