ﻻ يوجد ملخص باللغة العربية
In this paper, we investigate the physical associations between blended far-infrared (FIR)-emitting galaxies, in order to identify the level of line-of-sight projection contamination in the single-dish Herschel data. Building on previous work, and as part of the Herschel Extragalactic Legacy Project (HELP), we identify a sample of galaxies in the COSMOS field which are found to be both FIR-bright (typically $sim 15$ mJy) and blended within the Herschel 250 $mu$m beam. We identify a spectroscopic or photometric redshift for each FIR-bright source. We conduct a joint probability distribution analysis on the redshift probability density functions to determine the fraction of the FIR sources with multiple FIR-bright counterparts which are likely to be found at consistent ($Delta z$ $< 0.01$) redshifts. We find that only 3 (0.4 per cent) of the pair permutations between counterparts are $>50$ per cent likely to be at consistent redshifts. A majority of counterparts (72 per cent) have no overlap in their redshift probability distributions whatsoever. This is in good agreement with the results of recent simulations, which indicate that single-dish observations of the FIR sky should be strongly contaminated by line of sight projection effects. We conclude that for our sample of 3.6- and 24-$mu$m selected, FIR-bright objects in the COSMOS field, the overwhelming majority of multi-component FIR systems are line of sight projections within the 18.1 arcsec Herschel beam, rather than physical associations.
We present a method of selection of 24~$mu$m galaxies from the AKARI North Ecliptic Pole (NEP) Deep Field down to $150 mbox{ }mu$Jy and measurements of their two-point correlation function. We aim to associate various 24 $mu$m selected galaxy populat
We investigate the multiplicity of extragalactic sources detected by the Herschel Space Observatory in the COSMOS field. Using 3.6- and 24-$mu$m catalogues, in conjunction with 250-$mu$m data from Herschel, we seek to determine if a significant fract
We perform lens modelling and source reconstruction of Submillimeter Array (SMA) data for a sample of 12 strongly lensed galaxies selected at 500$mu$m in the Herschel Astrophysical Terahertz Large Area Survey H-ATLAS. A previous analysis of the same
We present a sample of 80 candidate strongly lensed galaxies with flux density above 100mJy at 500{mu}m extracted from the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS), over an area of 600 square degrees. Available imaging and spectro
We present a sample of 290 24-micron-selected active galactic nuclei (AGNs) mostly at z ~ 0.3 -- 2.5, within 5.2 square degrees distributed as 25 X 25 fields around each of 30 galaxy clusters in the Local Cluster Substructure Survey (LoCuSS). The sam