ﻻ يوجد ملخص باللغة العربية
We present a method of selection of 24~$mu$m galaxies from the AKARI North Ecliptic Pole (NEP) Deep Field down to $150 mbox{ }mu$Jy and measurements of their two-point correlation function. We aim to associate various 24 $mu$m selected galaxy populations with present day galaxies and to investigate the impact of their environment on the direction of their subsequent evolution. We discuss using of Support Vector Machines (SVM) algorithm applied to infrared photometric data to perform star-galaxy separation, in which we achieve an accuracy higher than 80%. The photometric redshift information, obtained through the CIGALE code, is used to explore the redshift dependence of the correlation function parameter ($r_{0}$) as well as the linear bias evolution. This parameter relates galaxy distribution to the one of the underlying dark matter. We connect the investigated sources to their potential local descendants through a simplified model of the clustering evolution without interactions. We observe two different populations of star-forming galaxies, at $z_{med}sim 0.25$, $z_{med}sim 0.9$. Measurements of total infrared luminosities ($L_{TIR}$) show that the sample at $z_{med}sim 0.25$ is composed mostly of local star-forming galaxies, while the sample at $z_{med}sim0.9$ is composed of luminous infrared galaxies (LIRGs) with $L_{TIR}sim 10^{11.62}L_{odot}$. We find that dark halo mass is not necessarily correlated with the $L_{TIR}$: for subsamples with $L_{TIR}= 10^{11.15} L_{odot}$ at $z_{med}sim 0.7$ we observe a higher clustering length ($r_{0}=6.21pm0.78$ $[h^{-1} mbox{Mpc}]$) than for a subsample with mean $L_{TIR}=10^{11.84} L_{odot}$ at $z_{med}sim1.1$ ($r_{0}=5.86pm0.69$ $h^{-1} mbox{Mpc}$). We find that galaxies at $z_{med}sim 0.9$ can be ancestors of present day $L_{*}$ early type galaxies, which exhibit a very high $r_{0}sim 8$~$h^{-1} mbox{Mpc}$.
We present a preliminary analysis of clustering of galaxies luminous in the near- and mid-infrared as seen by seven various ilters of the AKARI IRC instrument from 2 $mu$m to 24 $mu$m in the the AKARI NEP-Deep field. We compare populations of galaxie
Context: It is crucial to develop a method for classifying objects detected in deep surveys at infrared wavelengths. We specifically need a method to separate galaxies from stars using only the infrared information to study the properties of galaxies
The extragalactic background suggests half the energy generated by stars reprocessed into the infrared (IR) by dust. At z$sim$1.3, 90% of star formation is obscured by dust. To fully understand the cosmic star formation history, it is critical to inv
Context. The North Ecliptic Pole (NEP) field provides a unique set of panchromatic data, well suited for active galactic nuclei (AGN) studies. Selection of AGN candidates is often based on mid-infrared (MIR) measurements. Such method, despite its eff
We present mid-infrared (MIR) luminosity functions (LFs) of local star-forming (SF) galaxies in the AKARI NEP-Wide Survey field. In order to derive more accurate luminosity function, we used spectroscopic sample only. Based on the NEP-Wide point sour