ترغب بنشر مسار تعليمي؟ اضغط هنا

The Physics of Flash (Supernova) Spectroscopy

338   0   0.0 ( 0 )
 نشر من قبل Christopher S. Kochanek
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف C. S. Kochanek




اسأل ChatGPT حول البحث

We examine flash spectroscopy of a circumstellar medium (CSM) ionized by the hard radiation pulse produced by the emerging shock of a supernova (SN). We first find that the rise and fall times of the Halpha emission constrains the location of the CSM with a peak at tpeak=Rstar sqrt(2/c vshock) for a star of radius Rstar and a shock velocity of vshock. The dropping temperature of the transient emission naturally reproduces the evolution of lines with different ionization energies. Second, for red supergiants (RSGs), the shock break out radiatively accelerates the CSM to produce broad, early-time line wings independent of the Thomson optical depth of the CSM. Finally, the CSM recombination rates in binaries can be dominated by a dense, cool, wind collision interface like those seen in Wolf-Rayet binaries rather than the individual stellar winds. Combining these three results, the flash spectroscopy observations of the normal Type IIP iPTF13dqy (SN 2013fs) are naturally explained by an RSG with a normal, Thomson optically thin wind in a binary with a separation of ~10^4 Rsun without any need for a pre-SN eruption. Similarly, the broad line wings seen for the Type IIb iPTF13ast (SN 2013cu), whose progenitors are generally yellow supergiants in binaries, are likely due to radiative acceleration of the CSM rather than pre-existing, Wolf-Rayet-like wind.

قيم البحث

اقرأ أيضاً

132 - G. Dhungana , R. Kehoe , J. Vinko 2015
We present extensive optical ($UBVRI$, $griz$, and open CCD) and near-infrared ($ZYJH$) photometry for the very nearby Type IIP SN ~2013ej extending from +1 to +461 days after shock breakout, estimated to be MJD $56496.9pm0.3$. Substantial time serie s ultraviolet and optical spectroscopy obtained from +8 to +135 days are also presented. Considering well-observed SNe IIP from the literature, we derive $UBVRIJHK$ bolometric calibrations from $UBVRI$ and unfiltered measurements that potentially reach 2% precision with a $B-V$ color-dependent correction. We observe moderately strong Si II $lambda6355$ as early as +8 days. The photospheric velocity ($v_{rm ph}$) is determined by modeling the spectra in the vicinity of Fe II $lambda5169$ whenever observed, and interpolating at photometric epochs based on a semianalytic method. This gives $v_{rm ph} = 4500pm500$ km s$^{-1}$ at +50 days. We also observe spectral homogeneity of ultraviolet spectra at +10--12 days for SNe IIP, while variations are evident a week after explosion. Using the expanding photosphere method, from combined analysis of SN 2013ej and SN 2002ap, we estimate the distance to the host galaxy to be $9.0_{-0.6}^{+0.4}$ Mpc, consistent with distance estimates from other methods. Photometric and spectroscopic analysis during the plateau phase, which we estimated to be $94pm7$ days long, yields an explosion energy of $0.9pm0.3times10^{51}$ ergs, a final pre-explosion progenitor mass of $15.2pm4.2$~M$_odot$ and a radius of $250pm70$~R$_odot$. We observe a broken exponential profile beyond +120 days, with a break point at +$183pm16$ days. Measurements beyond this break time yield a $^{56}$Ni mass of $0.013pm0.001$~M$_odot$.
We present optical photometric and spectroscopic observations of the 1987A-like supernova (SN) 2009mw. Our $BVRI$ and $griz$ photometry covers 167 days of evolution, including the rise to the light curve maximum, and ends just after the beginning of the linear tail phase. We compare the observational properties of SN 2009mw with those of other SNe belonging to the same subgroup, and find that it shows similarities to several objects. The physical parameters of the progenitor and the SN are estimated via hydrodynamical modelling, yielding an explosion energy of $1$ foe, a pre-SN mass of $19,{rm M_{odot}}$, a progenitor radius as $30,{rm R_{odot}}$ and a $^{56}$Ni mass as $0.062,{rm M_{odot}}$. These values indicate that the progenitor of SN 2009mw was a blue supergiant star, similar to the progenitor of SN 1987A. We examine the host environment of SN 2009mw and find that it emerged from a population with slightly sub-solar metallicty.
66 - Adam Burrows 2018
The histories of core-collapse supernova theory and of neutrino physics have paralleled one another for more than seventy years. Almost every development in neutrino physics necessitated modifications in supernova models. What has emerged is a comple x and rich dynamical scenario for stellar death that is being progressively better tested by increasingly sophisiticated computer simulations. Though there is still much to learn about the agency and details of supernova explosions, whatever final theory emerges will have the neutrino at its core. I summarize in this brief contribution some of the salient developments in neutrino physics as they related to supernova theory, while avoiding any attempt to review the hundreds of pivotal papers that have pushed supernova theory forward. My goal has been merely to highlight the debt of supernova astrophysics to neutrino physics.
131 - Lin Yan 2016
We report the first maximum-light far-Ultraviolet to near-infrared spectra (1000A - 1.62um, rest) of a H-poor superluminous supernova, Gaia16apd. At z=0.1018, it is one of the closest and the UV brightest such events, with 17.4 (AB) magnitude in Swif t UV band (1928A) at -11days pre-maximum. Assuming an exponential form, we derived the rise time of 33days and the peak bolometric luminosity of 3x10^{44}ergs^-1. At maximum light, the estimated photospheric temperature and velocity are 17,000K and 14,000kms^-1 respectively. The inferred radiative and kinetic energy are roughly 1x10^{51} and 2x10^{52}erg. Gaia16apd is extremely UV luminous, emitting 50% of its total luminosity at 1000 - 2500A. Compared to the UV spectra (normalized at 3100A) of well studied SN1992A (Ia), SN2011fe(Ia), SN1999em (IIP) and SN1993J (IIb), it has orders of magnitude more far-UV emission. This excess is interpreted primarily as a result of weaker metal line blanketing due to much lower abundance of iron-group elements in the outer ejecta. Because these elements originate either from the natal metallicity of the star, or have been newly produced, our observation provides direct evidence that little of these freshly synthesized material, including 56Ni, was mixed into the outer ejecta, and the progenitor metallicity is likely sub-solar. This disfavors Pair-Instability Supernova (PISN) models with Helium core masses >=90Msun, where substantial 56Ni material is produced. Higher photospheric temperature of Gaia16apd than that of normal SNe may also contribute to the observed far-UV excess. We find some indication that UV luminous SLSNe-I like Gaia16apd could be common. Using the UV spectra, we show that WFIRST could detect SLSNe-I out to redshift of 8.
The DUNE/LBNF program aims to address key questions in neutrino physics and astroparticle physics. Realizing DUNEs potential to reconstruct low-energy particles in the 10-100 MeV energy range will bring significant benefits for all DUNEs science goal s. In neutrino physics, low-energy sensitivity will improve neutrino energy reconstruction in the GeV range relevant for the kinematics of DUNEs long-baseline oscillation program. In astroparticle physics, low-energy capabilities will make DUNEs far detectors the worlds best apparatus for studying the electron-neutrino flux from a supernova. This will open a new window to unrivaled studies of the dynamics and neutronization of a stars central core in real time, the potential discovery of the neutrino mass hierarchy, provide new sensitivity to physics beyond the Standard Model, and evidence of neutrino quantum-coherence effects. The same capabilities will also provide new sensitivity to `boosted dark matter models that are not observable in traditional direct dark matter detectors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا