ﻻ يوجد ملخص باللغة العربية
The simulation of Cherenkov photons lateral density and arrival time distributions in Extensive Air Showers (EASs) was performed with the CORSIKA code in the energy range: 100 GeV to 100 TeV. On the basis of this simulation we obtained a set of approximating functions for the primary $gamma$-ray photons, protons and iron nuclei incident at zenith angles from 0$^circ$ to 40$^circ$ over different altitudes of observation. Such a parameterisation is important for the primary particle identification, for the reconstruction of the shower observables and hence for a more efficient disentanglement of the $gamma$-ray showers from the hadronic showers. From our parameterisation analysis, we have found that even though the geometry of the lateral density ($rho_{ch}$) and the arrival time ($t_{ch}$) distributions is different for different primaries at a particular energy ($E$), at a particular incident angle ($theta$) and at a particular altitude of observation ($H$) up to a given distance from the showe core ($R$), the distributions follow the same mathematical functions $rho(E,R,theta,H) = a E^{b}exp[-{c R + (theta /d)^{2}-f H}]$ and $t(E,R,theta,H) = l E^{-m}exp(n/R^{p})({theta}^q+s)(u {H}^2+v)$ respectively but with different values of function parameters.
We study the azimuthal distributions of Cherenkov photons in Extensive Air Showers (EASs) initiated by $gamma$-ray, proton and iron primaries of different energies incident at various zenith angles over a high altitude observation level. The azimutha
We have investigated some features of the density and arrival time distributions of Cherenkov photons in extensive air showers using the CORSIKA simulation package. The main thrust of this study is to see the effect of hadronic interaction models on
We have studied the distribution patterns of lateral density, arrival time and angular position of Cherenkov photons generated in Extensive Air Showers (EASs) initiated by $gamma$-ray, proton and iron primaries incident with various energies and at v
A novel type of EAS array (PRISMA-32) has been constructed on the base of NEVOD-DECOR experiment (MEPhI,Moscow) and is now taking data. It consists of 32 specially designed scintillator en-detectors able to measure two main EAS components: hadrons (n
The Wide Field-of-View Cherenkov Telescope Array (WFCTA) and the Water Cherenkov Detector Arrays (WCDA) of LHAASO are designed to work in combination for measuring the energy spectra of various cosmic ray species over a very wide energy range from a