ﻻ يوجد ملخص باللغة العربية
We study the azimuthal distributions of Cherenkov photons in Extensive Air Showers (EASs) initiated by $gamma$-ray, proton and iron primaries of different energies incident at various zenith angles over a high altitude observation level. The azimuthal distributions of electrons and positrons along with their asymmetric behaviour have also been studied here to understand the feature of azimuthal distributions of Cherenkov photons in EASs. The main motivation behind this study is to see whether the azimuthal distribution of Cherenkov photons can provide any means to distinguish the $gamma$-ray initiated showers from that of hadron initiated showers in the ground based $gamma$-ray astronomy experiment. Apart from this, such study is also important to understand the natures of $gamma$-ray and hadronic showers in general. We have used the CORSIKA 6.990 simulation package for generating the showers. The study shows the double peak nature of the azimuthal distribution of Cherenkov photons which is due to the separation of electron and positrons in the azimuthal plane. The pattern of distribution is more sensitive for the energy of the primary particle than its angle of incidence. There is no significant difference between distributions for $gamma$-ray and handron initiated showers.
The simulation of Cherenkov photons lateral density and arrival time distributions in Extensive Air Showers (EASs) was performed with the CORSIKA code in the energy range: 100 GeV to 100 TeV. On the basis of this simulation we obtained a set of appro
We have studied the distribution patterns of lateral density, arrival time and angular position of Cherenkov photons generated in Extensive Air Showers (EASs) initiated by $gamma$-ray, proton and iron primaries incident with various energies and at v
We have investigated some features of the density and arrival time distributions of Cherenkov photons in extensive air showers using the CORSIKA simulation package. The main thrust of this study is to see the effect of hadronic interaction models on
Preliminary results on the development of a separation method for Cerenkov (CL) and fluorescence (FL) light from EAS are shown. The results are based on the measurement of attenuation coefficients of CL and FL for different filters. A total of six op
Hard photon emitted from energetic heavy ion collisions is of very interesting since it does not experience the late-stage nuclear interaction, therefore it is useful to explore the early-stage information of matter phase. In this work, we have prese