ﻻ يوجد ملخص باللغة العربية
HOLMES is a new experiment aiming at directly measuring the neutrino mass with a sensitivity below 2 eV. HOLMES will perform a calorimetric measurement of the energy released in the decay of $^{163}$Ho. The calorimetric measurement eliminates systematic uncertainties arising from the use of external beta sources, as in experiments with spectrometers. This measurement was proposed in 1982 by A. De Rujula and M. Lusignoli, but only recently the detector technological progress has allowed to design a sensitive experiment. HOLMES will deploy a large array of low temperature microcalorimeters with implanted $^{163}$Ho nuclei. HOLMES, besides being an important step forward in the direct neutrino mass measurement with a calorimetric approach, will also establish the potential of this approach to extend the sensitivity down to 0.1 eV and lower. In its final configuration HOLMES will collect about $3cdot 10^{13}$ decays with 1000 detectors characterized by an instrumental energy resolution of the order of few eV and a time resolution of few microseconds. To embed the $^{163}$Ho into the gold absorbers a custom mass separator ion implanter is being developed. The detectors used for the HOLMES experiment will be Mo/Cu bilayers TESs (Transition Edge Sensors) on SiN$_x$ membrane with gold absorbers. Microwave multiplexed rf-SQUIDs are the best available technique to read out large array of such detectors. An extensive R&D activity is in progress in order to maximize the multiplexing factor while preserving the performances of the individual detectors. The current activities are focused on the the single detector performances optimization and on the $^{163}$Ho isotope production and embedding. A preliminary measurement of a sub-array of $4times 16$ detectors is planned late in 2017. In this contribution we present the HOLMES project with its technical challenges, its status and perspectives.
The European Research Council has recently funded HOLMES, a new experiment to directly measure the neutrino mass. HOLMES will perform a calorimetric measurement of the energy released in the decay of 163Ho. The calorimetric measurement eliminates sys
The assessment of neutrino absolute mass scale is still a crucial challenge in today particle physics and cosmology. Beta or electron capture spectrum end-point study is currently the only experimental method which can provide a model independent mea
The European Research Council has recently funded HOLMES, a project with the aim of performing a calorimetric measurement of the electron neutrino mass measuring the energy released in the electron capture decay of 163Ho. The baseline for HOLMES are
In recent years, the progress on low temperature detector technologies has allowed design of large scale experiments aiming at pushing down the sensitivity on the neutrino mass below 1,eV. Even with outstanding performances in both energy ($sim$eV on
The determination of the neutrino mass is an open issue in modern particle physics and astrophysics. The direct mass measurement is the only theory-unrelated experimental tool capable to probe such quantity. The HOLMES experiment aims to measure the